设总体X~N(u,σ^2),X1,....,Xn为X的样本,Y= 20

如图... 如图 展开
 我来答
IEIOA
2019-07-14 · TA获得超过2.2万个赞
知道答主
回答量:16
采纳率:100%
帮助的人:5745
展开全部

Y=(X1+X2)^2/(X1-X2)^2~F(1,1)

解题如下:

X~N(0,σ^2)E(X1+X2)

=EX1+EX2=0D(X1+X2)

=DX1+DX2

=2σ^2X1+X2~N(0,2σ^2)

同理:X1-X2~N(0,2σ^2)

所以1/√2σ(X1+X2)~N(0,1)1/√2σ(X1-X2)~N(0,1)

所以1/2σ^2(X1+X2)^2~X^2(1)X^2(n)

代表自由度为n的卡方分布

同理1/2σ^2(X1-X2)^2~X^2(1)

令A=1/2σ^2(X1+X2)^2B=1/2σ^2(X1-X2)^2

所以(X1+X2)^2/(X1-X2)^2=1/2σ^2(X1+X2)^2/1/2σ^2(X1-X2)^2=A/B=(A/1)/(B/1)

而这就是F(1,1)分布的定义

所以(X1+X2)^2/(X1-X2)^2~F(1,1)

若n个相互独立的随机变量ξ₁,ξ₂,...,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布。

扩展资料:

从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值,将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的,因此按照  分布的定义,应该服从参数为的分布。

如果将总体中的方差σ2 用样本方差 s2代替,它是否也服从  分布呢?理论上可以证明,它是服从  分布的,但是参数  不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和

我们常常把一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有 n 个变量,其中k 个被限制的样本统计量,则这个表达式的自由度为 n-k。比如中包含ξ1,ξ2,…,ξn这 n 个变量,其中ξ1-ξn-1相互独立,ξn为其余变量的平均值,因此自由度为 n-1

参考资料:百度百科-卡方分布

富港检测技术(东莞)有限公司_
2024-08-05 广告
作为富港检测技术(东莞)有限公司的工作人员,关于ISTA 1A、2A及3A的区别及测试项目简述如下:ISTA 1A是非模拟集中性能试验,主要进行固定位移振动和冲击测试,针对不超过68kg的包装件。ISTA 2A则在此基础上增加了部分模拟性能... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
茹翊神谕者

2021-12-08 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1606万
展开全部

简单计算一下即可,答案如图所示

备注

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友0a7dacf
2018-12-02 · TA获得超过523个赞
知道小有建树答主
回答量:1200
采纳率:92%
帮助的人:166万
展开全部
X~N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1)1/√2σ(X1-X2)~N(0,1)所以1/2σ^2(X1+X2)^2~X^2(1)X^2(n)代表自由度为n的卡方分布同理1/2σ^2(X1-X2)^2~X^2(1)令A=1/2σ^2(X1+X2)^2B=1/2σ^2(X1-X2)^2所以(X1+X2)^2/(X1-X2)^2=1/2σ^2(X1+X2)^2/1/2σ^2(X1-X2)^2=A/B=(A/1)/(B/1)而这就是F(1,1)分布的定义所以(X1+X2)^2/(X1-X2)^2~F(1,1)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式