2个回答
展开全部
0<x<π
tanx=-2
(1)
sinx = 2/√(2^2+1^2) = 2√5/5
(2)
cosx = -√5/5
[2cos(π/2+x) - cos(π-x) ]/[ sin(π/2-x) -3sin(π+x) ]
=[-2sinx +cosx ]/[ cosx +3sinx ]
=( -4√5/5 -√5/5 ]/ [ -√5/5 + 6√5/5]
= -5/5
=-1
(3)
2(sinx)^2 -sinxcosx +(cosx)^2
=2[2√5/5]^2 -[2√5/5][-√5/5] + [-√5/5]^2
=8/5 +2/5 + 1/5
=11/5
tanx=-2
(1)
sinx = 2/√(2^2+1^2) = 2√5/5
(2)
cosx = -√5/5
[2cos(π/2+x) - cos(π-x) ]/[ sin(π/2-x) -3sin(π+x) ]
=[-2sinx +cosx ]/[ cosx +3sinx ]
=( -4√5/5 -√5/5 ]/ [ -√5/5 + 6√5/5]
= -5/5
=-1
(3)
2(sinx)^2 -sinxcosx +(cosx)^2
=2[2√5/5]^2 -[2√5/5][-√5/5] + [-√5/5]^2
=8/5 +2/5 + 1/5
=11/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询