最近遇到的数学难题。是高三的。求学霸指教

1:已知C1:y=1/2p*x^2(p〉0)的焦点与C2:x^2/3-y^2=1的右焦点的线交C1于第一象限的点M。若C1的M处的线平行于C2的一条渐近线,求P的值2:过... 1:已知C1:y=1/2p*x^2(p〉0)的焦点与C2:x^2/3-y^2=1的右焦点的线交C1于第一象限的点M。若C1的M处的线平行于C2的一条渐近线,求P的值

2:过(√2,0)引直线L与曲线y=√(1-x^2)相交与A,B两点,o为坐标原点,当oAoB面积最大时,求L的斜率。

3:已知C:y^2=8x与点M(-2,2),过C的焦点,且斜率为K的直线与C交与A,B两点,若→MA*→MB=0.求K
——————————————————求学霸解答。感激不尽
展开
百度网友d696f85
2013-11-25 · 超过12用户采纳过TA的回答
知道答主
回答量:248
采纳率:50%
帮助的人:38.1万
展开全部

1由  x^2/3-y^2=1知:点m处 切线斜率为k=√3/3;c=2;
令m(x0,y0),在M处y0‘=x0/p=k,   故x0=(√3/3)p,y0=p/6,
此时三点(0,p/2),(x0,y0),(2,0)确定直线,有(p/2-y0)/-x0=y0/(x0-2)
解得p=4√3;

2

3很明显,抛物线C的焦点坐标为(2,0),∴AB的方程可写成:y=k(x-2)=kx-2k,
∴A、B的坐标可分别设为(m,km-2k)、(n,kn-2k),
∴向量MA=(m+2,km-2k-2)、向量MB=(n+2,kn-2k-2)。

联立:y=kx-2k、y^2=8x,消去y,得:k^2x^2-4k^2x+4k^2=8x,
∴k^2x^2-(4k^2+8)x+4k^2=0。
显然,m、n是方程k^2x^2-(4k^2+8)x+4k^2=0的两根,∴由韦达定理,有:
m+n=(4k^2+8)/k^2、mn=4。

∵向量MA·向量MB=0,∴(m+2)(n+2)+(km-2k-2)(kn-2k-2)=0,
∴mn+2(m+n)+4+k^2mn-(2k+2)k(m+n)+(2k+2)^2=0,
∴(1+k^2)mn-(2k^2+2k-2)(m+n)+(2k+2)^2+4=0,
∴4(1+k^2)-(2k^2+2k-2)(4k^2+8)/k^2+(2k+2)^2+4=0,
∴(1+k^2)-(2k^2+2k-2)(k^2+2)/k^2+(k+1)^2+1=0,
∴(1+k^2)-(2k^4+4k^2+2k^3+4k-2k^2-4)/k^2+(k^2+2k+1)+1=0,
∴(1+k^2)-(2k^2+4+2k-2)-(4k-4)/k^2+k^2+2k+2=0,
∴1-(4k-4)/k^2=0,∴k^2-4k+4=0,∴(k-2)^2=0,∴k=2。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式