2个回答
展开全部
图就是这样。
设切点A(a, a^2), y = x^2, y' = 2x, 切线斜率 k = y'(a) = 2a
切线方程 y-a^2 = 2a(x-a), 即 x = (y-a^2)/(2a) + a = y/(2a)+a/2;
曲线 y = x^2 ,即 x = √y。
S = ∫<0, a^2> [y/(2a) + a/2 - √y]dy
= [y^2/(4a) + (a/2)y - (2/3)y^(3/2)]<0, a^2>
= a^3/4 + a^3/2 - (2/3)a^3 = a^3/12 = 1/12, 得 a = 1.
(1) A(1, 1), 切线方程 y-1 = 2(x-1), 2x-y-1 = 0, 交 x 轴 B(1/2, 0)
(2) Vx = π∫<0, 1>(x^2)^2 dx - (π/3)(1/2)1^2
= π/5 - π/6 = π/30
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询