高等数学:利用无穷小等价代换求下列极限
(2)
x->0
分子
1-(cosx)^2 = (sinx)^2 = x^2 +o(x^2)
5x^2-2(1-(cosx)^2) = 3x^2+o(x^2)
分母
(tanx)^2 =x^2+o(x^2)
3x^3+4(tanx)^2 =4x^2+o(x^2)
lim(x->0) [5x^2-2(1-(cosx)^2)]/[3x^3+4(tanx)^2]
=lim(x->0) 3x^2/[4x^2]
=3/4
(5)
x->0
分子
√(1+x^2) = 1+(1/2)x^2 +o(x^2)
√(1+x^2) -1 = (1/2)x^2 +o(x^2)
(1+tanx)^(1/3) = (1+x)^(1/3) = 1+(1/3)x+o(x)
(1+tanx)^(1/3) -1 = (1/3)x+o(x)
[(1+tanx)^(1/3) -1].[√(1+x^2) -1] = (1/6)x^3 +o(x^3)
分母
tanx = x+(1/3)x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
tanx -sinx =(1/2)x^3+o(x^3)
lim(x->0) [(1+tanx)^(1/3)-1] .[ √(1+x^2) -1 ] /(tanx -sinx)
=lim(x->0) (1/6)x^3 /[(1/2)x^3]
=1/3
(6)
x->0-
分子
cosx = 1-(1/2)x^2 +o(x^2)
√cosx = √[1-(1/2)x^2 +o(x^2)] = 1- (1/4)x^2 +o(x^2)
1-√cosx = (1/4)x^2 +o(x^2)
tanx = x+o(x)
(1-√cosx).tanx = (1/4)x^3 +o(x^3)
分母
1-cosx = (1/2)x^2 +o(x^2)
(1-cosx)^(3/2) = (1/2^(3/2)) x^3 +o(x^3)
lim(x->0-) (1-√cosx).tanx/(1-cosx)^(3/2)
=lim(x->0-) (1/4)x^3 /[ (1/2^(3/2)) x^3 ]
=2^(-2 +3/2)
=2^(-1/2)
=√2/2