高中数学必修3有哪些公式
4个回答
2014-03-06
展开全部
第一章 算法初步
1.1.1
算法的概念
1、算法概念:
在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点:
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2
程序框图
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
高中各年级课件教案习题汇总语文数学英语物理化学
(二)构成程序框的图形符号及其作用
程序框
名称
功能
起止框
表示一个算法的起始和结束,是任何流程图
不可少的。
输入、输出框
表示一个算法输入和输出的信息,可用在算
法中任何需要输入、输出的位置。
处理框
赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
判断框
判断某一条件是否成立,成立时在出口处标
明“是”或“Y”;不成立时标明“否”或“N”。 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。 (三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。 2、条件结构:
A
B
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。 5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
2.1.2系统抽样
1.系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
2.1.3分层抽样
1.分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题:
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
2.2.2用样本的数字特征估计总体的数字特征
1、本均值:n
xxxxn
�8�0�8�0�8�0�8�8
�8�321
2、.样本标准差:n
xxxxxxs
sn2
22212
)
()()(�8�2�8�0�8�0�8�2�8�0�8�2�8�8
�8�8�8�3
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、
均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍 (3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(sxsx�8�0�8�2的应用; “去掉一个最高分,去掉一个最低分”中的科学道理
2.3.2两个变量的线性相关 1、概念:
(1)回归直线方程 (2)回归系数 2.最小二乘法
3.直线回归方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存
的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即
因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控
制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项
(1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。
第三章 概 率
3.1.1 —3.1.2随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试
验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例
fn(A)=nnA
为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n
的比值nnA
,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
3.1.3 概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件; (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立
事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及随机数的产生
1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=总的基本事件个数包含的基本事件数
A
3.3.1—3.3.2几何概型及均匀随机数的产生
1、基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:
P(A)=积)的区域长度(面积或体
试验的全部结果所构成
积)
的区域长度(面积或体
构成事件A;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每
1.1.1
算法的概念
1、算法概念:
在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点:
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2
程序框图
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
高中各年级课件教案习题汇总语文数学英语物理化学
(二)构成程序框的图形符号及其作用
程序框
名称
功能
起止框
表示一个算法的起始和结束,是任何流程图
不可少的。
输入、输出框
表示一个算法输入和输出的信息,可用在算
法中任何需要输入、输出的位置。
处理框
赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
判断框
判断某一条件是否成立,成立时在出口处标
明“是”或“Y”;不成立时标明“否”或“N”。 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。 (三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。 2、条件结构:
A
B
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。 5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
2.1.2系统抽样
1.系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
2.1.3分层抽样
1.分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题:
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
2.2.2用样本的数字特征估计总体的数字特征
1、本均值:n
xxxxn
�8�0�8�0�8�0�8�8
�8�321
2、.样本标准差:n
xxxxxxs
sn2
22212
)
()()(�8�2�8�0�8�0�8�2�8�0�8�2�8�8
�8�8�8�3
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、
均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍 (3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(sxsx�8�0�8�2的应用; “去掉一个最高分,去掉一个最低分”中的科学道理
2.3.2两个变量的线性相关 1、概念:
(1)回归直线方程 (2)回归系数 2.最小二乘法
3.直线回归方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存
的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即
因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控
制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项
(1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。
第三章 概 率
3.1.1 —3.1.2随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试
验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例
fn(A)=nnA
为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n
的比值nnA
,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
3.1.3 概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件; (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立
事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及随机数的产生
1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=总的基本事件个数包含的基本事件数
A
3.3.1—3.3.2几何概型及均匀随机数的产生
1、基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:
P(A)=积)的区域长度(面积或体
试验的全部结果所构成
积)
的区域长度(面积或体
构成事件A;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中数学必修三有统计,算法初步,概率共三章。大部分为文字识记内容,公式较少。
1.统计
① 概率=样本容量÷总体容量
② 分层抽样抽取数量=第i层个数÷总样本数×样本容量
③抽样距=总体数量÷抽取样本数量
④平均数x=(x1+x2+x3+......+xn)/n
⑤方差s^2=[(x1-x)^2 +(x2-x)^2+……+(xn-x)^2]/n
⑥标准差=根号(S^2)
⑦线性回归方程 y=bx+a
2.算法初步
此部分公式主要有算法框图和算法语句(分为顺序结构,选择结构和循环结构)
3.概率
古典概型的概率计算公式:P(A)=A包含的基本事件数÷总基本事件数
几何概型的概率公式:P(A)=构成A事件的区域长度(面积,体积)÷构成总事件的区域长度(面积,体积)
互斥事件 P(A1+A2)= P(A1)+ P(A2)
对立事件P(A)=1-P(A拔)
1.统计
① 概率=样本容量÷总体容量
② 分层抽样抽取数量=第i层个数÷总样本数×样本容量
③抽样距=总体数量÷抽取样本数量
④平均数x=(x1+x2+x3+......+xn)/n
⑤方差s^2=[(x1-x)^2 +(x2-x)^2+……+(xn-x)^2]/n
⑥标准差=根号(S^2)
⑦线性回归方程 y=bx+a
2.算法初步
此部分公式主要有算法框图和算法语句(分为顺序结构,选择结构和循环结构)
3.概率
古典概型的概率计算公式:P(A)=A包含的基本事件数÷总基本事件数
几何概型的概率公式:P(A)=构成A事件的区域长度(面积,体积)÷构成总事件的区域长度(面积,体积)
互斥事件 P(A1+A2)= P(A1)+ P(A2)
对立事件P(A)=1-P(A拔)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询