洛必达法则例题
2013-12-17
展开全部
1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2
xsinx = 2xsin(x/2)cos(x/2)
原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x
对分子分母同时求导(洛必达法则)
(tgx)' = 1 / (cosx)^2
(x)' = 1
原式 = lim 1/(cosx)^2
当 x --> 0 时,cosx ---> 1
原式 = 1
xsinx = 2xsin(x/2)cos(x/2)
原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x
对分子分母同时求导(洛必达法则)
(tgx)' = 1 / (cosx)^2
(x)' = 1
原式 = lim 1/(cosx)^2
当 x --> 0 时,cosx ---> 1
原式 = 1
2013-12-17
展开全部
0.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-17
展开全部
1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询