高中数学已知函数f(x)=lnx-(ax^2)/2+(a-1)x,其中实数 |a|<2,且a≠0

 我来答
荣俭謇君
2020-02-19 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.3万
采纳率:34%
帮助的人:682万
展开全部
根据拉格朗日中值定理
[f(x1)-f(x2)]/(x1-x2)=f’(b1)
(b1∈(x1,x2))
x1,x2∈[1,2]
b1∈(x1,x2)∈(1,2)
若f’(x)在(0,1)的值域包含f’(x)在(1,2)的值
则必有b2使f’(b2)=f’(b1)
f’(x)=1/x-ax+a-1
f’(0)=∞
f’(1)=0
f’(2)=-1/2-a
f’’(x)=-1/x^2-a
令f’’(x)=0
-1/x^2-a=0
x^2=-1/a
a>0
f’’(x)=0无解
即f’(x)为单调函数
f’(1)<f’(0)f’(x)为单减函数
f’(2)<f’(1)=0
不在[f(0),f(1)]上
a不能取a>0
a<0
f’’(x)=0
-1/x^2-a=0
1/x^2=-a
x^2=-1/a
x=√(-1/a)
1<x<√2
f’’’(x)=2/x^3>0
有极小值
f’(√(-1/a))=1/√(-1/a)-a√(-1/a)+a-1
2√(-a)-(√(-a))^2-1≥0
(√(-a)-1)≤0
√(-a)≤1
-a≤1
a≥-1
实数a的取值a=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式