平行线的判定与平行线的性质有什么区别

 我来答
本元斐史辰
2019-10-30 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:906万
展开全部
判定方法:(1)
同角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行;
(4)在同一平面内,垂直于同一直线的两直线平行.
性质:(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件;它们的区别是:平行线的性质和平行线的判定中的条件和结论恰好相反:
平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。它们是由“数”到“形”的判断。
平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。它们是由“形”到“数”的说理。
rrr811211
2021-02-16
知道答主
回答量:1
采纳率:0%
帮助的人:526
展开全部
平行线的判定与性质的区别在于,判定是在已知的条件下,证明结论;而性质,是在知道结论的情况下,得到其具有的数量关系。
从使用关系上看,二者是互逆的,即可根据题目的具体情形,来选择是使用判定定理,还是使用其性质。
概念本身即是判定定理也是性质定理。比如平行线的概念:同一平面没有交点的两直线,我们可以直接用它来判断两线的平行关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
原淑琴盘戌
2019-12-02 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:871万
展开全部
平行线的判定与性质的区别在于,判定是在已知的条件下,证明结论;而性质,是在知道结论的情况下,得到其具有的数量关系。
  从使用关系上看,二者是互逆的,即可根据题目的具体情形,来选择是使用判定定理,还是使用其性质。
  概念本身即是判定定理也是性质定理。比如平行线的概念:同一平面没有交点的两直线,我们可以直接用它来判断两线的平行关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甲国英善巳
2020-03-11 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:928万
展开全部
平行线的判定指在不知道两条直线的位置关系的前提下作出判断的依据,平行线的性质而是指已知两条直线平行得出的结论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式