已知X大于Y大于0,且XY=1,求X^2+Y^2/X-y的最小值?
2个回答
2013-11-28
展开全部
(x2+y2)/(x-y)= (x2+y2-2xy+2xy)/(x-y)
因为xy=1,所以
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0所以(x-y)>0
所以有不等式的定理知道
(x-y)+2/(x-y)>=2根号下[(x-y)*2/(x-y)]=2根号2
而此时(x-y)^2=2 符合上面的条件
所以(x2+y2)/(x-y)的最小值为2根号2
因为xy=1,所以
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0所以(x-y)>0
所以有不等式的定理知道
(x-y)+2/(x-y)>=2根号下[(x-y)*2/(x-y)]=2根号2
而此时(x-y)^2=2 符合上面的条件
所以(x2+y2)/(x-y)的最小值为2根号2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-28
展开全部
35/18
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询