在五边形ABCDE中,AB=AE,BC+DE=CD,角ABC+角AED=180°,求证DA平分角CDE。
1个回答
2013-11-24
展开全部
将三角形DAE以A为顶点逆时针旋转一定角度,使DA与BA完全重合,记D点位置为D',连结DD'.则DE=D'B,DA=D'A,∠ADE=∠AD'B.
∵∠1+∠2=180°,
∴D' B C三点共线.
又∵BC+DE=CD,且DE=D'B,
∴BC+D'B=D'C=CD,则∠CD'D=∠CDD'.
∵DA=D'A,
∴∠ADD'=∠AD'D.
则∠CD'D+∠AD'D=∠CDD'+∠ADD'.
即∠CD'A=∠CDA.
又∵∠ADE=∠AD'B,
∴∠ADE=∠ADC.
得证:AD平分∠CDE.
望采纳 谢谢您。
∵∠1+∠2=180°,
∴D' B C三点共线.
又∵BC+DE=CD,且DE=D'B,
∴BC+D'B=D'C=CD,则∠CD'D=∠CDD'.
∵DA=D'A,
∴∠ADD'=∠AD'D.
则∠CD'D+∠AD'D=∠CDD'+∠ADD'.
即∠CD'A=∠CDA.
又∵∠ADE=∠AD'B,
∴∠ADE=∠ADC.
得证:AD平分∠CDE.
望采纳 谢谢您。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询