高中数学题 求答案 :D
2个回答
展开全部
f(x)=(ax^2+2)/(bx+c)
f(-x)=-f(x)
(a(-x)^2+2)/(b(-x)+c)=-(ax^2+2)/(bx+c)
(ax^2+2)/(-bx+c)=(ax^2+2)/(-bx-c)
-bx+c=-bx-c
c=0
f(x)=(ax^2+2)/(bx)
f(1)=3
(a*1^2+2)/(b*1)=3
(a+2)/b=3
a+2=3b
a=3b-2
f(x)=((3b-2)x^2+2)/(bx)
=(3-2/b)x+2/(bx)
f(2)<4
(3-2/b)*2+2/(b*2)<4
3-2/b+1/(2b)<2
-3/(2b)<-1
3/(2b)>1
b<3/2
b∈Z
b=1
f(x)=((3*1-2)x^2+2)/(1*x)
=(x^2+2)/x
=x+2/x
>=2√2
最小值:2√2
f(-x)=-f(x)
(a(-x)^2+2)/(b(-x)+c)=-(ax^2+2)/(bx+c)
(ax^2+2)/(-bx+c)=(ax^2+2)/(-bx-c)
-bx+c=-bx-c
c=0
f(x)=(ax^2+2)/(bx)
f(1)=3
(a*1^2+2)/(b*1)=3
(a+2)/b=3
a+2=3b
a=3b-2
f(x)=((3b-2)x^2+2)/(bx)
=(3-2/b)x+2/(bx)
f(2)<4
(3-2/b)*2+2/(b*2)<4
3-2/b+1/(2b)<2
-3/(2b)<-1
3/(2b)>1
b<3/2
b∈Z
b=1
f(x)=((3*1-2)x^2+2)/(1*x)
=(x^2+2)/x
=x+2/x
>=2√2
最小值:2√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询