求sin(2nπ+2π/3)·cos(nπ+4π/3)的值(nεZ)
1个回答
2014-03-10
展开全部
1)当n为偶数时, sin(2nπ+2π/3)+cos(nπ+4π/3)=sin2π/3+cos4π/3)
=sin(π-π/3)+cos(π+π/3).
=sinπ/3-cosπ/3
=sinπ/3-cosπ/3.
=√3/2-1/2
2)当n为奇数时,sin(2nπ+2π/3)+cos(nπ+4π/3)=sin2π/3-cos4π/3.
=√3/2-(-1/2).
=√3/2+1/2.
=sin(π-π/3)+cos(π+π/3).
=sinπ/3-cosπ/3
=sinπ/3-cosπ/3.
=√3/2-1/2
2)当n为奇数时,sin(2nπ+2π/3)+cos(nπ+4π/3)=sin2π/3-cos4π/3.
=√3/2-(-1/2).
=√3/2+1/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询