已知{an}为等比数列,其前n项和为Sn,且Sn=2∧n+a,若bn=(2n-1)an,求bn的前

n项和Tn... n项和Tn 展开
 我来答
lianglww123
2013-12-17 · TA获得超过3.5万个赞
知道小有建树答主
回答量:6229
采纳率:0%
帮助的人:83.4万
展开全部
1, 求出an通项公式
an = Sn - Sn-1 = (2^n+a) - (2^n-1 +a) = 2^(n-1)
q = an/an-1 = 2^(n-1)/2^(n-2) = 2
由等比数列求和公式

Sn = (a1- an*q)/(1-q) = 2^n -a1
所以 -a1 = a
a1 = S1 = 2^1 + a = 2+a
所以 2+a = -(-a1) = -a

a = -1
a1 = 1
所以 an = 1* 2^(n-1) = 2^(n-1)

2
设{Cn} = {2n-1}, Cn公差 d = 2
q Tn - Tn = (c1a2+c2a3+c3a4+...+ cnan+1) - (c1a1+c2a2+c3a3+...+ cnan)
= -c1a1 + (-d)a2 + (-d)a3+... + (-d) an + cnan+1
= -1 -d * (a2- an *q)/(1 -q) + cnan+1
= -1 -2* (2^n -2) + (2n-1) 2^n
= (2n-1 -2) 2^n -1 -2*(-2)
= (2n-3) 2^n +3


2 Tn - Tn = (2n-3) 2^n +3
Tn = (2n-3) 2^n +3
更多追问追答
追答
1, 求出an通项公式
an = Sn - Sn-1 = (2^n+a) - (2^n-1 +a) = 2^(n-1)
q = an/an-1 = 2^(n-1)/2^(n-2) = 2
由等比数列求和公式

Sn = (a1- an*q)/(1-q) = 2^n -a1
所以 -a1 = a
a1 = S1 = 2^1 + a = 2+a
所以 2+a = -(-a1) = -a

a = -1
a1 = 1
所以 an = 1* 2^(n-1) = 2^(n-1)

2
设{Cn} = {2n-1}, Cn公差 d = 2
q Tn - Tn = (c1a2+c2a3+c3a4+...+ cnan+1) - (c1a1+c2a2+c3a3+...+ cnan)
= -c1a1 + (-d)a2 + (-d)a3+... + (-d) an + cnan+1
= -1 -d * (a2- an *q)/(1 -q) + cnan+1
= -1 -2* (2^n -2) + (2n-1) 2^n
= (2n-1 -2) 2^n -1 -2*(-2)
= (2n-3) 2^n +3


2 Tn - Tn = (2n-3) 2^n +3
Tn = (2n-3) 2^n +3
追问
哥哥  你这是错位相减法吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式