线性代数应该怎么学习呢?

 我来答
匿名用户
2013-12-03
展开全部
一、“早”.提倡一个“早”字,是提醒考生考研数学备考要早计划、早安排、早动手.因为数学是一门思维严谨、逻辑性强、相对比较抽象的学科.和一些记忆性较多的学科不同,数学需要理解的概念多,方法又灵活多变,而理解概念,特别是理解比较抽象的概念是一个渐近的过程,它需要思考、消化,需要琢磨、需要从不同的角度、不同的侧面的深入研究,总之它需要时间,任何搞突击,搞速成的思想不可取,这对大多数考生而言,不可能取得成功;另一方面,早计划、早安排、早动手是采取“笨鸟先飞”之策,这是考研的激烈竞争现实所要求的,早一天准备,多一分成绩,多一份把握,现在不少大一、大二的在校生已经在准备2~3年后的考研,这似乎是早了点,但作为一个目标、作为一个追求,无可非议.作为2001年的考生,从现在开始备考,恐怕已经不算太早了.

二、“纲”.突出一个纲字,就是要认真研究考试大纲,要根据考试大纲规定的考试内容、考试要求、考试样题有计划地、认真地、全面地、系统地复习备考,加强备考的针对性.

由于全国基础数学教材(高等数学,线性代数,概率论和数理统计)并不统一,各学校、各专业对这些课程要求的层次也各不相同,因此教育部并没有指定统一的教材或参考书作为命题的依据,而是以教育部制定的《全国硕士研究生入学统一考试数学考试大纲》(下称《大纲》)作为考试的法规性文件,命题以《大纲》为依据,考生备考复习当然也应以《大纲》为依据.

为了让广大考生对“考什么”有一定的了解(不是盲目的备考),教育部考试中心命制的试题,每年都具有稳定性、连续性的特点.《大纲》提供的样题及历届试题也在于让考生了解“考什么”.历届试题中,从来没有出过偏题、怪题,也没有出过超过大纲范围的超纲题.当然,一份好的试题,首先要有好的区分度,使高水平考生考出好成绩,因此试题中难、易试题要有恰当的搭配;试题的总量必须有一定的限制,同时试题还要有尽可能大的覆盖面,因此一味地去做难题,甚至怪题、偏题是不可取的,“题海战术”不能替代全面、系统的复习,由于试题有极大的覆盖面,每年试题几乎都要覆盖所有的章节,因此偏废某部分内容也是不恰当的.任何“猜题”及侥幸心理都会导致失败.只有根据大纲,全面、系统地复习,不留遗漏,才不会留下遗憾.

三、“基”.强调一个“基”字,是指要强调数学学习中的三基,即要重视基本概念的理解,基本方法的掌握,基本运算的熟练.

基本概念理解不透彻,对解题会带来思维上的困难和混乱.因此对概念必须搞清它的内涵,还要研究它的外延,要理解正面的含义,还要思考、理解概念的侧面、反面.例如关于矩阵的秩,教材中的定义是:A是阴Xn矩阵,若A中有一个r阶子式不为零,所有r阶以上子式(如果它还有的话)均为零,则称A的秩为r,记成rank(A):r(或r(A)=r,秩A=r).显然,定义中内涵的要点有:1.A中至少有一个r阶子式不为零;2.所有r阶以上均为零.3.若所有r+1子式都为零,则必有所有r阶以上子式均为零.要点2和3是等价条件,至于r阶子式是否可以为零?小于r阶的子式是否可以为零?所有r-1阶的子式是否可以全部为零?这些都是秩的概念的外延内容,如果这些概念搞清楚了。那么下述选择题就会迎刃而解.

例1 设A是m×n矩阵,r(A)=r

(B)有不等于零的r阶子式,没有不等于零的r+1阶子式.

(C)有等于零的r阶子式,没有不等于零的r+1阶子式.

(D)任何r阶子式不等于零,任何r+1阶子式都等于零.

答案:(B)

基本方法要熟练掌握.熟练掌握不等于死记硬背,相反要抓问题的实质,要在理解的基础上适当记忆.把需要记忆的东西缩小到最低限度,很多方法可以通过练习来记住,例如一个实对称矩阵,一定存在正交矩阵,通过正交变换化为对角阵,其步骤较多,但通过练习,不难解决.

基本计算要熟练.学习数学,离不开计算,计算要熟练,当然要做一定数量的习题,通过一定数量的习题,把计算的基本功练扎实.在练习过程中,自觉的提高运算能力,提高运算的准确性,养成良好的运算习惯和科学作风.特别对线性代数而言,运算并不复杂,大量的运算是大家早已熟练了的加法和乘法,从而养成良好的运算习惯和科学作风显得尤为重要。例如线性代数的前四章中(行列式、矩阵、向量、方程组)绝大多数的运算是初等变换.用初等变换求行列式的值、求逆矩阵、求向量组(或矩阵)的秩、求向量组的极大线性无关组、求方程组的解等.可以想象,一旦初等变换过程中出现某个数值计算错误,那你的答案将是什么样的结果?从历届数学试题来看,每年需要通过计算得分的内容均在70%左右,可见计算能力培养的重要.只听(听各种辅导班)不练,只看(看各类辅导资料)不练,眼高手低,专找难题做,这并不适合一般考生的情况,在历届考生中,不乏有教训惨痛的人.

四、“活”.线性代数中概念多、定理多、符号多、运算规律多,内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应通过全面系统的复习,充分理解概念,掌握定理的条件、结论及应用,熟悉符号的意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,抓规律,使零散的知识点串起来、连起来,使所学知识融会贯通,实现一个“活”字.

线性代数各章节的内容,不是孤立割裂的,而是相互渗透、紧密联系的.如A是n阶方阵,若,|A|≠0(称A为非奇阵).<=>A是可逆阵.<=>有n阶方阵B,使得AB=BA=E.<=>B=A-1=A*/|A|.<=>r(A)=n(称A是满秩阵).<=>存在若干个初等阵P1,P2,…,PN,使得PNPN-1…P1A=E.<=>(A┆E)→(E┆A-1).<=>A可表示成若干个可逆阵的乘积.<=>A可表示成若干个初等阵的积。<=>A的列向量组线性无关(列满秩).<=>AX=0,唯一零解.<=>A的行向量组线性无关(行满秩).<=>A的列(行)向量组是Rn空间的基.<=>任何n维列向量b均可由A的列向量线性表出(且表出法唯一).<=>对任意的列向量b,方程组AX=b有唯一解,且唯一解为A-1b<=>A没有零特征值,即λi≠O,i=1,2,…,n.<=A是正定阵(正交阵,&hellip. 这种知识间的相互联系、渗透,给综合命题创造了条件,同样一个试题,可以从不同的角度有多种命制试题的方法.

例2 (2001年数学一第九题)设α1,α2,…,αs,是线性方程组AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs也是AX=0的基础解系.

解析 本题的答题要点是:(1)对任意t1,t2,βi,i=1,2,…,s仍是AX=0的解;(2)对任意t1,t2,β1,β2,…,βs向量个数是s;(3)β1,β2,…,βs,线性无关<=>t1s+(一1)n+1t2s≠0. 满足(1)、(2)、(3)时,即,t1s+(一1)n+1t2s一1)”≠0时,β1,β2,…,βs仍是AX=0的基础解系.

变式(1) (改变成线性相关性试题)

已知向量组α1,α2,…,αs线性无关,β1=t1α1+t2α2,β2=t1α2+ t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs线性无关.

变式(2) (改变成向量组的秩的试题)

已知向量组α1,α2,…,αs的秩为s.β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+ t2α1,试问t1,t2满足什么条件时,r(β1,β2,…,βs)=s.

变式(3) (改变成等价向量组的试题)

已知α1,α2,…,αs线性无关,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs和α1,α2,…,αs是等价向量组.

变式(4) (改变成子空间的基的试题)

设y是Rn的子空间,α1,α2,…,αs是V的基,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs也是子空间V的基.

难道你不认为以上的各种变式基本上是一样的吗?它们的答题要点是什么呢?

改变试题难度,将向量个数s具体化,则成2001年数学试卷二第十二题.

变式(5) 已知α1,α2,α3,α4,是线性方程组AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,β3=t1α3+t2α4,β4=t1α4+t2α3,,试问t1,t2满足什么条件时,β1,β2,β3,β4,也是AX=0的基础解系.

改变参数,你不是可以“随心所欲”吗?

变式(6) 已知α1,α2,…,αs是AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问α1,α2,…,αs,满足什么条件时,β1,β2,…,βs也是AX=0的基础解系.

如果你体会不到以上各种变式实质上是一样的,那么你没有学“活”线性代数,你的知识点还是孤立的.

由于知识间的紧密联系和渗透,而综合考试试题不再依附于某章、某节(依附于某章、某节后面的习题,实际上是给解题人提供了用该章、该节的内容和方法解题的提示),这会给考生解题带来困难.学“活”并非易事,需要经常总结,广开思路.

例3 已知A是n阶正定阵,B是n阶反对称阵,证明A-B2是正定阵.

解析 本题题目本身有提示性,已知的是正定阵,要证的也是正定阵,显然属于二次型中有关正定性的试题,具体解答如下.

B是反对称阵,故BT=-B.

任给X≠0,因A正定,故XTAX>O,又XT(一B2)X=XTBTBX=(BX)TBX≥0.

故有XT(A-B2)X=XT(A+(-B)B)X=XT(A+BTB)X=XTAX+(BX)TBX>O.

所以A-B2是正定阵.

变式(1) 已知A是n阶正定阵,B是n阶反对称阵.证明A-B2是可逆阵.v这个变式要求证明A-B2可逆,但已知A正定.为了利用已知条件,还可以想到A-B2是否正定,即若证明了A-B2正定,自然也就证明了A-B2可逆.

变式(2) 已知B是n阶反对称阵,E是n阶单位阵,证明E-B2可逆.

这个变式中,隐去了A是正定阵的条件,而是给了一个具体的正定阵E,要求想到用证正定的角度来证E-B2可逆,难度就相当大了,这需要经验的积累和总结.

由于知识间的广泛联系和相互渗透,给不少题的一题多解创造了条件.你可以从各个不同的角度去研究试题,找到一个合适的切入点,从而最终找到问题的答案.

总之,重视三基,重视各章节之间的联系,重视从多角度研究试题,重视灵活性和综合性,重视应用,是取得理想成绩的必由之路。
匿名用户
2013-12-03
展开全部
你好,线性代数主要是矩阵运算与证明,最重要的是要深刻理解定义,最好能对别人讲解原理.掌握定义,计算细心,当然还要再做些练习哟
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-03
展开全部
就两个字:多做练习
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-10-12
展开全部
多看书,把线代的各个概念都搞清楚,公式背牢,然后做书上的例题,一定要把例题掌握,然后做课后练习。做完这些步骤(一定要确保认真),期末考试完全够用了。如果有不会的题目,可以上大学数学app,上面有各种教材例题和课后题的视频课,听老师的讲解,更容易掌握知识。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-03
展开全部
认真听课,做好笔记,然后课后多做练习,其实不难的!!加油!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式