求二次函数y=x^2-2ax+2在【2,4】上的最大值和最小值
展开全部
解:此函数为开口向上的2次函数
函数对称轴为
x=-(-2a)/2=a
①
当a<2时
在【2,4】区间内
x=2有最小值,x=4有最大值
代入得
最小值
6-4a
最大值18-8a
②当a∈【2,4】时
当x=a函数恒为最小值,最小值为2-a^2
⑴若a<3,当x=4有最大值,最大值为18-8a
⑵若a=3,最小值2-a^2
=-7
当x=4或x=2有最大值,最大值为-6
⑶若a>3,当x=2有最大值,最大值为6-4a
③当a>4时
在【2,4】区间内
x=4有最小值,x=2有最大值
代入得
最小值
18-8a
最大值6-4a
再综上所述就行了.
函数对称轴为
x=-(-2a)/2=a
①
当a<2时
在【2,4】区间内
x=2有最小值,x=4有最大值
代入得
最小值
6-4a
最大值18-8a
②当a∈【2,4】时
当x=a函数恒为最小值,最小值为2-a^2
⑴若a<3,当x=4有最大值,最大值为18-8a
⑵若a=3,最小值2-a^2
=-7
当x=4或x=2有最大值,最大值为-6
⑶若a>3,当x=2有最大值,最大值为6-4a
③当a>4时
在【2,4】区间内
x=4有最小值,x=2有最大值
代入得
最小值
18-8a
最大值6-4a
再综上所述就行了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询