某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
展开全部
由每件产品的日销售价x(元)与产品的日销量y(件)之间的关系可以看出:随着售价的增大,日销售量逐渐减小
所以:
设销售量y与每件售价x的关系为:y=kx+b
那么:
15k+b=25
20k+b=20
解得:k=-1、b=40
即:y=-x+40
且经检验,发现(25,15)、(30,10)满足上式
则:
①要使每日的销售利润为200元,每件产品的销售价为多少?
销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
所以:200=(x-10)*(-x+40)
解得:x=30,或者x=20
经检验两者都满足条件
所以,每件产品的售价为20或者30元时,日利润均为200元
②
由前面知,销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
所以:日利润m=(x-10)*(-x+40)=-x^2+50x-400
=-(x^2-50x+25^2)+(25^2-400)
=-(x-25)^2+225
所以,对于二次函数来说,当x=25时,函数m有最大值=225
即,每件售价为25元时,日利润最大,最大值为225元
所以:
设销售量y与每件售价x的关系为:y=kx+b
那么:
15k+b=25
20k+b=20
解得:k=-1、b=40
即:y=-x+40
且经检验,发现(25,15)、(30,10)满足上式
则:
①要使每日的销售利润为200元,每件产品的销售价为多少?
销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
所以:200=(x-10)*(-x+40)
解得:x=30,或者x=20
经检验两者都满足条件
所以,每件产品的售价为20或者30元时,日利润均为200元
②
由前面知,销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
所以:日利润m=(x-10)*(-x+40)=-x^2+50x-400
=-(x^2-50x+25^2)+(25^2-400)
=-(x-25)^2+225
所以,对于二次函数来说,当x=25时,函数m有最大值=225
即,每件售价为25元时,日利润最大,最大值为225元
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |