设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分必要条件是()
5个回答
展开全部
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是A的列向量组线性无关。
由线性关系的定义求解。
解:A为m×n矩阵,∴A有m行n列,且方程组有n个未知数
Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n
∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.
矩阵A有n列,∴A的列向量组线性无关
而A有m行,m可能小于n,此时行向量组线性无关,只能说R(A)=m,不能证明r(A)≥n。
因此,充分必要条件是A的列向量组线性无关。
扩展资料
函数线性相关的定理
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
齐次线性方程组ax=0有非零解的充分必要条件
就是|a|=0
也就是不是满秩
这里是a为m×n矩阵
就像求线性相关一样,把a的列向量看成是一些向量
x是要求的系数
因为不全为0,所以是线性相关
选a
就是|a|=0
也就是不是满秩
这里是a为m×n矩阵
就像求线性相关一样,把a的列向量看成是一些向量
x是要求的系数
因为不全为0,所以是线性相关
选a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A
A的列向量组线性无关
表示0的线性表出式唯一,
而零解显然是一组解,所以仅有零解
AX=0仅有零解
假设A的列向量组线性相关
则存在一组非零解
矛盾
A的列向量组线性无关
表示0的线性表出式唯一,
而零解显然是一组解,所以仅有零解
AX=0仅有零解
假设A的列向量组线性相关
则存在一组非零解
矛盾
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询