答案是B。
X,Y 分别是随机变量, (X,Y)是一个把样本空间映射到实数平面的函数。它是一个二维随机变量。D是错误的。
A,B,C的区别在于(X,Y)的分布是不是二维正态分布。我们只需举两个例子就可以说明:
(X,Y)可能服从二维正态分布:如果X,Y相互独立,那么(X,Y)的分布密度公式可以通过X,Y的密度公式的乘积得到。你会发现:
向左转|向右转
上面这个表达式其实就是说(X,Y)的两个维度相互独立,且分别是正态分布。这个例子说明C是错误的。
(X,Y)可能不服从二维正态分布:假设X的期望是0,方差是1. 定义Y为:
可以发现Y也是标准正态分布的。可是(X,Y)的分布只在 x=y 和 x=-y这两条线上可能有正值。明显不是二维正态分布。这个例子说明A是错误的。
综上所述,答案B是正确的。
另外说一句,只有X,Y分别正态分布,且相互独立的时候,才能确保(X,Y)是二维正态分布。即使X,Y的相关是0,也仍然可以找到(X,Y)非二维正态分布的例子。构造方法跟上面第二点的方法类似,但是要找到合适的分界点(上面例子用的是1),使X,Y相关恰好为0.wiki上说这个值在1.54左右。
扩展资料:
正态分布图形特征
1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
是二维随机变量。B。
X,Y 分别是随机变量, (X,Y)是一个把样本空间映射到实数平面的函数。它是一个二维随机变量。D是错误的。
A,B,C的区别在于(X,Y)的分布是不是二维正态分布。我们只需举两个例子就可以说明:
(X,Y)可能服从二维正态分布:如果X,Y相互独立,那么(X,Y)的分布密度公式可以通过X,Y的密度公式的乘积得到。发现:
上面这个表达式其实就是说(X,Y)的两个维度相互独立,且分别是正态分布。这个例子说明C是错误的。
(X,Y)可能不服从二维正态分布:假设X的期望是0,方差是1. 定义Y为:
可以发现Y也是标准正态分布的。可是(X,Y)的分布只在 x=y 和 x=-y这两条线上可能有正值。明显不是二维正态分布。这个例子说明A是错误的。
综上所述,答案B是正确的。
扩展资料:
正态分布图形特征
1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
是二维随机变量。利用排除法得出选择B选项。
X,Y 分别是随机变量, (X,Y)是一个把样本空间映射到实数平面的函数。它是一个二维随机变量。D是错误的。
(X,Y)可能不服从二维正态分布:假设X的期望是0,方差是1。
A,B,C的区别在于(X,Y)的分布是不是二维正态分布。只需举两个例子就可以说明:
(X,Y)可能服从二维正态分布:如果X,Y相互独立,那么(X,Y)的分布密度公式可以通过X,Y的密度公式的乘积得到。会发现:上面这个表达式其实就是说(X,Y)的两个维度相互独立,且分别是正态分布。这个例子说明C是错误的。
定义Y为:可以发现Y也是标准正态分布的。可是(X,Y)的分布只在 x=y 和 x=-y这两条线上可能有正值。明显不是二维正态分布。这个例子说明A是错误的。
综上所述,选择B。
扩展资料:
性质:
(如果
(2)如果
与
是统计独立的正态随机变量,那么:
它们的和也满足正态分布
它们的差也满足正态分布
U与V两者是相互独立的。(要求X与Y的方差相等)。
你好,
答案是B。
X,Y 分别是随机变量, (X,Y)是一个把样本空间映射到实数平面的函数。它是一个二维随机变量。D是错误的。
A,B,C的区别在于(X,Y)的分布是不是二维正态分布。我们只需举两个例子就可以说明:
(X,Y)可能服从二维正态分布:如果X,Y相互独立,那么(X,Y)的分布密度公式可以通过X,Y的密度公式的乘积得到。你会发现:
上面这个表达式其实就是说(X,Y)的两个维度相互独立,且分别是正态分布。这个例子说明C是错误的。(X,Y)可能不服从二维正态分布:假设X的期望是0,方差是1. 定义Y为:
可以发现Y也是标准正态分布的。可是(X,Y)的分布只在 x=y 和 x=-y这两条线上可能有正值。明显不是二维正态分布。这个例子说明A是错误的。
综上所述,答案B是正确的。
另外说一句,只有X,Y分别正态分布,且相互独立的时候,才能确保(X,Y)是二维正态分布。即使X,Y的相关是0,也仍然可以找到(X,Y)非二维正态分布的例子。构造方法跟上面第二点的方法类似,但是要找到合适的分界点(上面例子用的是1),使X,Y相关恰好为0.wiki上说这个值在1.54左右。
希望这些对你的理解有所帮助,望采纳。
多谢!
谢谢采纳~