初二数学,几何

mzymzymy
高粉答主

2014-07-30 · 关注我不会让你失望
知道大有可为答主
回答量:2万
采纳率:93%
帮助的人:1.2亿
展开全部

(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,

∠ABE=∠DAF    

AB=AD    

∠BAE=∠D
∴△ABE≌△DAF(ASA),
∴AF=BE;

(2)解:MP与NQ相等.
理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,
∵AB∥CD,AD∥BC,
∴四边形AMPF与四边形BNQE是平行四边形,
∴AF=PM,BE=NQ,
∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,

∠ABE=∠DAF    

AB=AD    

∠BAE=∠D
∴△ABE≌△DAF(ASA),
∴AF=BE;
∴MP=NQ.

 

 

 

最快回答,望采纳,谢谢

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式