
∫(0→π/2) [(sint)^4-(sint)^6] dt求过程啊。。。谢谢啦
1个回答
展开全部
估计你的书本应该有这样一条公式:
当n为正整偶数时,即n=2m,m=1,2...
∫(0→π/2)(sinx)^ndx=[(2m-1)!!/(2m)!!](π/2)
当n为正整奇数时,即n=2m+1,m=0,1,2...
∫(0→π/2)(sinx)^ndx=[(2m)!!/(2m+1)!!]
知道这些后就好办了
∫(0→π/2)(sinx)^4dx
=(3/4)×(1/2)×(π/2)
=3π/16
∫(0→π/2)(sinx)^6dx
=(5/6)×(3/4)×(1/2)×(π/2)
=5π/32
所以,原式=3π/16-5π/32=π/32
当n为正整偶数时,即n=2m,m=1,2...
∫(0→π/2)(sinx)^ndx=[(2m-1)!!/(2m)!!](π/2)
当n为正整奇数时,即n=2m+1,m=0,1,2...
∫(0→π/2)(sinx)^ndx=[(2m)!!/(2m+1)!!]
知道这些后就好办了
∫(0→π/2)(sinx)^4dx
=(3/4)×(1/2)×(π/2)
=3π/16
∫(0→π/2)(sinx)^6dx
=(5/6)×(3/4)×(1/2)×(π/2)
=5π/32
所以,原式=3π/16-5π/32=π/32
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询