用适当的方法解下列方程
3个回答
2014-09-30
展开全部
依题意得△=(c-a)^2-4(b-c)(a-b)
=[(c-b)+(b-a)]^2-4(c-b)(b-a)
=(c-b)^2+2(c-b)(b-a)+(b-a)^2-4(c-b)(b-a)
=(c-b)^2-2(c-b)(b-a)+(b-a)^2
=[(c-b)-(b-a)]^2
=(c-2b+a)^2
=0
解得:a+c-2b=0
可得: a+c=2b
=[(c-b)+(b-a)]^2-4(c-b)(b-a)
=(c-b)^2+2(c-b)(b-a)+(b-a)^2-4(c-b)(b-a)
=(c-b)^2-2(c-b)(b-a)+(b-a)^2
=[(c-b)-(b-a)]^2
=(c-2b+a)^2
=0
解得:a+c-2b=0
可得: a+c=2b
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询