为什么二叉树度为0的结点总比度为2的结点多1个,证明下!

 我来答
赫运独以南
2020-07-09 · TA获得超过4038个赞
知道大有可为答主
回答量:3174
采纳率:27%
帮助的人:202万
展开全部
对于任意一棵二叉树BT,如果度为0的结点个数为n0,度为2的结点个数为n2,则n0=n2+1。
证明:假设度为1的结点个数为n1,结点总数为n,B为二叉树中的分支数。
因为在二叉树中,所有结点的度均小于或等于2,所以结点总数为:
n=n0+n1+n2
(1)
再查看一下分支数。在二叉树中,除根结点之外,每个结点都有一个从上向下的分支指向,所以,总的结点个数n与分支数B之间的关系为:n=B+1。
又因为在二叉树中,度为1的结点产生1个分支,度为2的结点产生2个分支,所以分支数B可以表示为:B=n1+2n2。
将此式代入上式,得:
n=n1+2n2+1
(2)
用(1)式减去(2)式,并经过调整后得到:n0=n2+1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式