1个回答
展开全部
利用两个引理就可以了~
(1)对于m乘n阶矩阵A、n乘s阶矩阵B:若AB=0,则r(A)+r(B)<=n
(2)对于n阶矩阵A、B,有r(A+B)<=r(A)+r(B)
证明上面的两个引理:
(1)因为AB=0,所以B的列向量均为AX=0的解,则B的列向量组的秩不超过AX=0的解空间W的维数,即r(B)<=dimW=n-r(A)(齐次线性方程组解空间维数等于未知量个数减去系数矩阵的秩),从而r(A)+r(B)<=n
(2)设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组,则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)
现在来证明该题:
利用(1),有r(A)+r(A-E)=r(A)+r(E-A)>=r(A+E-A)=r(E)=n
又A^2-A=A(A-E)=0
从而利用(2)可得r(A)+r(A-E)<=n
所以r(A)+r(A-E)=n
(1)对于m乘n阶矩阵A、n乘s阶矩阵B:若AB=0,则r(A)+r(B)<=n
(2)对于n阶矩阵A、B,有r(A+B)<=r(A)+r(B)
证明上面的两个引理:
(1)因为AB=0,所以B的列向量均为AX=0的解,则B的列向量组的秩不超过AX=0的解空间W的维数,即r(B)<=dimW=n-r(A)(齐次线性方程组解空间维数等于未知量个数减去系数矩阵的秩),从而r(A)+r(B)<=n
(2)设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组,则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)
现在来证明该题:
利用(1),有r(A)+r(A-E)=r(A)+r(E-A)>=r(A+E-A)=r(E)=n
又A^2-A=A(A-E)=0
从而利用(2)可得r(A)+r(A-E)<=n
所以r(A)+r(A-E)=n
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询