
如图,在三角形ABC中,AB=AC=4,P是BC上异于B,C的一点。求AP的平方+BPPC的值?
展开全部
证明:作AD⊥BC于D,则BD=CD,由勾股定理可得
AP^2=PD^2+AD^2
AD^2=AB^2-BD^2=16-BD^2
所以AP^2+PB×PC=PD^2+AD^2+PB×PC
=PD^2+16-BD^2+(BD-PD)(CD+PD)
=PD^2+16-BD^2+BD^2-PD^2
=16
AP^2=PD^2+AD^2
AD^2=AB^2-BD^2=16-BD^2
所以AP^2+PB×PC=PD^2+AD^2+PB×PC
=PD^2+16-BD^2+(BD-PD)(CD+PD)
=PD^2+16-BD^2+BD^2-PD^2
=16
追问
谢谢你咯
追答
不用谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询