P是三角形ABC内一点,向量AP=1/2向量AB+1/3向量AC,则S三角形pbc:S三角形abc

 我来答
寸辉屈凌春
2020-05-18 · TA获得超过983个赞
知道小有建树答主
回答量:2135
采纳率:100%
帮助的人:10.2万
展开全部
考虑到三角形的面积公式S=1/2absinC,引进一种新的运算---向量的外积(叉乘):
向量a×b=|a|•|b|•sinα(其中α表示向量a到b的角).
向量AP=1/2向量AB+1/3向量AC
上式可化为:BP-BA=-1/2BA+1/3(BC-BA)
BP=1/6BA+1/3BC
在上式两边同时用向量BC作外积得:
BP×BC=1/6BA×BC+1/3BC×BC,
由外积的定义知:|BP||BC|sin∠PBC=1/6|BA||BC|sin∠ABC+1/3|BC||BC|sin0
即 |BP||BC|sin∠PBC=1/6|BA||BC|sin∠ABC
所以S三角形PBC:S三角形ABC=1:6.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式