2个回答
展开全部
let
u=-x
du=-dx
x=π, u=-π
x=-π, u=π
I
=∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx
=∫π->-π) { (-u)(-sinu).arctan(e^(-u) )/[1+(cosu)^2] } -du
=∫-π->π) xsinx.arctan(e^(-x) )/[1+(cosx)^2] dx
2I
=∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx
+∫-π->π) xsinx.arctan(e^(-x) )/[1+(cosx)^2] dx
=∫-π->π) { xsinx/[1+(cosx)^2] } [ arctan(e^x ) + arctan(e^(-x)) ] dx
=(π/2) ∫-π->π) xsinx/[1+(cosx)^2] dx
=π∫(0->π) xsinx/[1+(cosx)^2] dx
= (π^2/2)∫(0->π) sinx/[1+(cosx)^2] dx
= -(π^2/2)∫(0->π) dcosx/[1+(cosx)^2]
= -(π^2/2) [arctan(cosx)]|(0->π)
=-(π^2/2)(-π/2)
= (1/4)π^3
I =(1/8)π^3
ie
∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx =I =(1/8)π^2
let
v= π-x
dv= -dx
x=0 , v=π
x=π, v=0
∫0->π) xsinx/[1+(cosx)^2] dx
=∫π->0) { (π-v)sinv/[1+(cosv)^2] } (-dv)
=∫0->π) (π-x) sinx/[1+(cosx)^2] dx
2∫0->π) xsinx/[1+(cosx)^2] dx =π∫0->π) sinx/[1+(cosx)^2] dx
∫0->π) xsinx/[1+(cosx)^2] dx =(1/2)π∫0->π) sinx/[1+(cosx)^2] dx
u=-x
du=-dx
x=π, u=-π
x=-π, u=π
I
=∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx
=∫π->-π) { (-u)(-sinu).arctan(e^(-u) )/[1+(cosu)^2] } -du
=∫-π->π) xsinx.arctan(e^(-x) )/[1+(cosx)^2] dx
2I
=∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx
+∫-π->π) xsinx.arctan(e^(-x) )/[1+(cosx)^2] dx
=∫-π->π) { xsinx/[1+(cosx)^2] } [ arctan(e^x ) + arctan(e^(-x)) ] dx
=(π/2) ∫-π->π) xsinx/[1+(cosx)^2] dx
=π∫(0->π) xsinx/[1+(cosx)^2] dx
= (π^2/2)∫(0->π) sinx/[1+(cosx)^2] dx
= -(π^2/2)∫(0->π) dcosx/[1+(cosx)^2]
= -(π^2/2) [arctan(cosx)]|(0->π)
=-(π^2/2)(-π/2)
= (1/4)π^3
I =(1/8)π^3
ie
∫-π->π) xsinx.arctan(e^x)/[1+(cosx)^2] dx =I =(1/8)π^2
let
v= π-x
dv= -dx
x=0 , v=π
x=π, v=0
∫0->π) xsinx/[1+(cosx)^2] dx
=∫π->0) { (π-v)sinv/[1+(cosv)^2] } (-dv)
=∫0->π) (π-x) sinx/[1+(cosx)^2] dx
2∫0->π) xsinx/[1+(cosx)^2] dx =π∫0->π) sinx/[1+(cosx)^2] dx
∫0->π) xsinx/[1+(cosx)^2] dx =(1/2)π∫0->π) sinx/[1+(cosx)^2] dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询