已知函数f(x)=二分之根号三Sin2x-cosx的平方-1/2,x属于R

设△ABC的内角A,B,C的对边分别为a,b,c,且c=√3,f(C)=0,若sinB=2sinA,求a,b的值... 设△ABC的内角A,B,C的对边分别为a,b,c,且c=√3,f(C)=0,若sinB=2sinA,求a,b的值 展开
风中的纸屑866
2014-08-09 · 公务员
风中的纸屑866
采纳数:15372 获赞数:52129

向TA提问 私信TA
展开全部
【参考答案】

f(C)=(√3 /2)sin2C-cosC^2-(1/2)
=(√3/2)sin2C-[(cos2C+1)/2]-(1/2)
=sin2Ccos(π/6)-sin(π/6)cos2C-1
=sin(2C- π/6)-1
=0
则 sin(2C- π/6)=1, 即C=π/3
由sinB=2sinA得
b/sinB=a/sinA
b/(2sinA)=a/sinA
b/2=a
b=2a
cosC=-1/2=[a^2 +(4a^2)-3]/(2a×2a)
1/2=(5a^2 -3)/(4a^2)
5a^2 -3=2a^2
3a^2=3
a=1,于是 b=2
不理解之处欢迎追问
爱吃大米的rat
2014-08-09
知道答主
回答量:38
采纳率:0%
帮助的人:15.9万
展开全部
你好!
先化简:f(x)=√3/2sin2x-cos²x-1/2=√3/2sin2x-(1+cos2x)/2-1/2=√3/2sin2x-1/2cos2x-1=sin(2x-π/6)-1,∵f(C)=0,由于C∈(0,π)解得C=π/3,根据正弦定理得sinB=2sinA,可得b=2a,根据余弦定理得cosC=a²+b²-c²/2ab,即cosπ/3=1/2=a²+(2a)²-(√3)²/2×2a×a,解得a=1,b=2a=2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式