做分数除法应用题的方法和技巧
请不要说“这要靠自己去改正”这之类的话。 展开
培养学生学会找准单位“1”。分数乘除法应用题的关键在于找准单位“1”,分数应用题中单位“1”是有规律可循的。学生学习分数应用题知识,首先要通过题中的关键句(分率句)寻找单位"1"的量,根据单位“1"的量判断谁是标准量,谁是比较量,从而理解是哪两种量在比较。
寻找数量关系,然后替换数量关系列出算式。 要抓住题中的“中心句”进行分析,从“中心句”中找出单位“1”和“相关联的两个量”,明确“相关联的两个量”之间的关系,根据分数乘法的意义写出关系式。
必要时借助线段图来帮助分析。 华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,原因之一便是脱离实际。”数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。数形结合思想是充分利用“形”把复杂的数量关系和抽象的数学概念变得形象、直观,能丰富学生的表象,引发联想。在分数乘除应用题教学时经常通过画线段图弄清题意,分析数量关系,拓宽解题思路,能引导学生迅速找到解决问题的方法。“线段图”直观、明了,能让学生清楚地看出两种量的关系,谁多谁少一目了然,便于学生判断。教师在教学生画图时要有耐心,学生刚接触线段图,有很多困难,先画什么,后画什么,要把哪条线段平均分成“几”份,容易混淆,教学时要让学生尝试,发现问题,教师引导纠错,使学生印象深刻。
因此,只要我们平时多引导,多启发,让学生在学习中积累经验,学生一定能用巧妙的方法解决很多现实生活中的问题。但是在教学分数乘除法应用题时,一定要注意循序渐进,坚持由易到难、由简到繁、循序渐进的原则。教师在教学中可以先安排练习一些简单类型的文字题和填空题,帮助学生找出单位“1”和数量关系式,掌握分数乘除应用题解题基本思路。加深理解、掌握解题方法。
1.求一个数是另一个数的几分之几(或百分之几)是多少.
(1)特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几.“一个数”是比较量,“另一个数”是标准量.求分率或百分率,也就是求它们的倍数关系.
(2)解题关键:从问题入手,搞清是把谁看做标准的数也就是把谁看做了单位“1”,谁和单位“1”的量比较,谁就作为被除数.
(3)甲是乙的几分之几(或百分之几):甲是比较量,乙是标准量,用甲除以乙.
2.甲比乙多(或少)几分之几(或百分之几):甲减乙比乙多(或少)几分之几(或百分之几).
(1)关系式:(甲数-乙数)÷乙数,或(甲数-乙数)÷甲数.
(2)特征:已知一个实际数量和它相对应的分率,求单位“1”的量.
(3)解题关键:准确判断单位“1”的量,把单位“1”的量看成x,根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量.
【解题规律和窍门总结起来有以下三种】
1.把分母(所表示的数量)作为单位“1”那么题中“是”、“占”、“比”等字后的(人或物)为分母,字前的(人或物)为分子。
2.若已知分母(或由计算得数)是多少(题中给的已知数或由计算得数),求分子(或由计算得数),用乘法;
3.若已知分子(或由计算得数)是多少(题中给的已知数或由计算得数),求分母(或由计算得数),用除法。
【此规律还可概括为】分母作单位“1”,“是”、“占”、“比”后为分母,前为分子;求分子,乘;求分母,除。
分数(包括百分数)应用题在小学数学中占有重要地位,也是小升初的常考题型。尽管校内数学也有涉及,但学生普遍反应不易接受。主要是因为一方面分数应用题是整数应用题的拓展与延伸,另外,分数应用题有自身的解题规律,是各种解题方法的综合。
下面我向大家介绍几种常见的分数应用题解题思路,希望能对同学们有所帮助。
一、字斟句酌;
对于任何题目来说,审题都是至关重要的,尤其是分数应用题,很多时候容易产生“歧义”,但实际上只要找准比较的对象,这个问题就可以迎刃而解。
比如说甲的图书比乙多 ,那就是以乙为标准,假如设乙为1分,甲就是 ;或者设乙为4份,甲就是5分。反过来说乙比甲少多少?这时甲是标准,甲是5份,乙是4分,就是说乙比甲少 。
还有一个典型的例子,汽车行驶在路上,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?
设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。所以降低后是120%-24%=96%。
二、画示意图;
果园里有三种树,梨树占 ,苹果树是梨树与桃树总和的 ,梨树与苹果树共360棵,桃树有多少棵?
分析:梨树占总数的 ,因此总数为“1”,苹果树占1小份,梨树与桃树总合占5小份。作如下示意图:
从图上可以清楚地看到梨树和苹果树占总数的 ,桃树占另外的 ,因此桃树有360棵。
示意图有它无与伦比的优势,就是特别直观,可以很清楚的表示各种复杂的数量关系,在和差倍分问题,行程问题等题型中也有特别重要的作用,同时数形结合也是一种重要的数学思想,应该好好掌握。
三、抓不变量;
某纺织厂女工占工人总数的 ,后来又调来30名女工,这时女工人数是男工人数的2倍。问:现在厂里共有多少工人?
解:抓住男工人数不变的特点,原来女工:男工5:3,现在女工:男工2:1=6:3,发现女工增加1份,对应着30人,那么总的工人数为:30×(6+3)=270人
四、找单位1;
六年级选出男生的 和12名女生参加数学竞赛,剩下的男生人数是女生的2倍。已知六年级共有学生156人,其中男生有多少人?
解:以男生总人数为单位1,未参加比赛的男生占所有男生的 ,未参加比赛的女生是所有男生的(1- )÷2= (一定要注意单位1的统一),156-12=144人是由男生和占男生的 的女生组成的,因此男生有(156-12)÷(1+ )=99(人)。
五、量率对应;
用数量和分率的对应关系,根据数量÷分率=单位量,可以解决很大一部分分数应用题,
一根绳子,第一次截去全长的 ,第二次截去 米,还剩2.4米,这根绳子原来长多少米?
题目中有两个分数,但并不全是分率,如果全长是单位1,第二次截去的 米和剩下的2.4米是数量,它们的和对应着绳长的 ,因此 米。
六、假设对比;
甲、乙两班各有一个图书室,共有303本书。已知甲班图书的 和乙班图书的 合在一起是95本,那么甲班的图书有多少本?
分析:甲班图书的 和乙班图书的 合在一起是95本,由此可得,甲班图书的 与乙班图书的 合在一起是95×4=380本,与实际的303本相比多出77本,这部分对应甲班图书的 ,用数量除以分率,可得甲班的图书为143本。
七、方程解法。
同上题。
设甲班的图书有x本,则乙班有(303-x)本,依题意列方程得:
解得x=143。
从上面可以看出,解答一道题目,通常方法不是单一,固定的。解题时根据实际情况,有时要将各种方法综合运用,或权衡利弊,择优选取最佳方案。总之,只有多加练习,勤于思考,才能灵活使用各种方法,选择合理的解题思路,这样才能充分体会到思维的乐趣。
打字不易,如满意,望采纳。
广告 您可能关注的内容 |