1个回答
展开全部
^解:∵微分方程为(x²-4x)y'+y=0,化为
dy/dx=y/[(4-x)x]
∴有dy/y=dx/[(4-x)x],
4dy/y=dx[1/x+1/(4-x)],
4ln|y|=ln|x|-ln|x-4|+ln|c|,
(c为任意非内零常数)
∴方程的容通解为y^4=cx/(x-4)
dy/dx=y/[(4-x)x]
∴有dy/y=dx/[(4-x)x],
4dy/y=dx[1/x+1/(4-x)],
4ln|y|=ln|x|-ln|x-4|+ln|c|,
(c为任意非内零常数)
∴方程的容通解为y^4=cx/(x-4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |