已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=k...
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
问题?
三次函数求交点类问题,须求出极大值和极小值,再与Y=0讨论。但是,做题时,为何要分类讨论?X的划分为什么是0? 展开
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
问题?
三次函数求交点类问题,须求出极大值和极小值,再与Y=0讨论。但是,做题时,为何要分类讨论?X的划分为什么是0? 展开
1个回答
展开全部
这是3次多项式函数的图像的切线与x轴,所以要先求切线方程。
(1) f'(x)=3x^2-6x+a k=a
切线方程:y=ax+2
与 y=0 联立解得:x=-2/a=-2
∴a=1
(2) f(x)=x^3-3x^2+x+2 与 y=kx-2 联立
x^3-3x^2+x+2=kx-2
x^3-3x^2+(1-k)x+4=0
作变换x=y+1得:y^3-(2+k)y+3-k
p=-(2+k) q=3-k
△=(3-k)^2/4+[-(2+k)]^3/27=211/108-35/18*k+1/36*k^2-1/27*k^3
当k<1时,△>0
∴当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点
(1) f'(x)=3x^2-6x+a k=a
切线方程:y=ax+2
与 y=0 联立解得:x=-2/a=-2
∴a=1
(2) f(x)=x^3-3x^2+x+2 与 y=kx-2 联立
x^3-3x^2+x+2=kx-2
x^3-3x^2+(1-k)x+4=0
作变换x=y+1得:y^3-(2+k)y+3-k
p=-(2+k) q=3-k
△=(3-k)^2/4+[-(2+k)]^3/27=211/108-35/18*k+1/36*k^2-1/27*k^3
当k<1时,△>0
∴当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询