(2012?惠州模拟)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.(1
(2012?惠州模拟)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.(1)求证:AB1∥平面BC1D;(2)...
(2012?惠州模拟)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.(1)求证:AB1∥平面BC1D;(2)若四棱锥B-AA1C1D的体积为3,求二面角C-BC1-D的正切值.
展开
1个回答
展开全部
(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,
∵四边形BCC1B1是平行四边形,
∴点O为B1C的中点.
∵D为AC的中点,
∴OD为△AB1C的中位线,
∴OD∥AB1.
∵OD?平面BC1D,AB1?平面BC1D,
∴AB1∥平面BC1D.
(2)解:依题意知,AB=BB1=2,
∵AA1⊥平面ABC,AA1?平面AA1C1C,
∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.
作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,
设BC=a,
在Rt△ABC中,AC=
=
,BE=
=
,
∴四棱锥B-AA1C1D的体积V=
×
(A1C1+AD)?AA1?BE=
×
×2×
=a.
依题意得,a=3,即BC=3.
∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC?平面BB1C1C,BB1?平面BB1C1C,
∴AB⊥平面BB1C1C.
取BC的中点F,连接DF,则DF∥AB,且DF=
AB=1.
∴DF⊥平面BB1C1C.
作FG⊥BC1,垂足为G,连接DG,
由于DF⊥BC1,且DF∩FG=F,
∴BC1⊥平面DFG.
∵DG?平面DFG,
∴BC1⊥DG.
∴∠DGF为二面角C-BC1-D的平面角.
由Rt△BGF~Rt△BCC1,得
=
,
得GF=
∵四边形BCC1B1是平行四边形,
∴点O为B1C的中点.
∵D为AC的中点,
∴OD为△AB1C的中位线,
∴OD∥AB1.
∵OD?平面BC1D,AB1?平面BC1D,
∴AB1∥平面BC1D.
(2)解:依题意知,AB=BB1=2,
∵AA1⊥平面ABC,AA1?平面AA1C1C,
∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.
作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,
设BC=a,
在Rt△ABC中,AC=
AB2+BC2 |
4+a2 |
AB?BC |
AC |
2a | ||
|
∴四棱锥B-AA1C1D的体积V=
1 |
3 |
1 |
2 |
1 |
6 |
3 |
2 |
4+a2 |
2a | ||
|
依题意得,a=3,即BC=3.
∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC?平面BB1C1C,BB1?平面BB1C1C,
∴AB⊥平面BB1C1C.
取BC的中点F,连接DF,则DF∥AB,且DF=
1 |
2 |
∴DF⊥平面BB1C1C.
作FG⊥BC1,垂足为G,连接DG,
由于DF⊥BC1,且DF∩FG=F,
∴BC1⊥平面DFG.
∵DG?平面DFG,
∴BC1⊥DG.
∴∠DGF为二面角C-BC1-D的平面角.
由Rt△BGF~Rt△BCC1,得
GF |
CC1 |
BF |
BC1 |
得GF=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载