勾股定理又叫什么

 我来答
坐着乌龟去游泳
高粉答主

2020-11-21 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:6976
采纳率:93%
帮助的人:230万
展开全部
  勾股定理:
  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。
  定理:
  如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。
  如果三角形的三条边a,b,c满足a^平方+b^平方=c^平方,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
  来源:
   是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
  有关勾股定理书籍
  《数学原理》人民教育出版社
  《探究勾股定理》同济大学出版社
  《优因培教数学》北京大学出版社
  《勾股模型》 新世纪出版社
  《九章算术一书》
  《优因培揭秘勾股定理》江西教育出版社
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。
  三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成玹方。依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在玄方内,那一部分就不动了。
  以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2 ).由此便可证得a2+b2=c2
刑寄文04k
2020-11-21 · TA获得超过958个赞
知道小有建树答主
回答量:784
采纳率:100%
帮助的人:22.8万
展开全部
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用.正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称.

  我国是发现和研究勾股定理最古老的国家.我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7~6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日.

  在法国和比利时,勾股定理又叫“驴桥定理”.还有的国家称勾股定理为“平方定理”.
  在陈子后一二百年,希腊的著明数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jiaangabdc
2020-11-21 · TA获得超过335个赞
知道小有建树答主
回答量:668
采纳率:55%
帮助的人:40.1万
展开全部
勾股定理又叫毕达哥拉斯定理。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果实课堂
高粉答主

2020-11-21 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:7.4万
采纳率:81%
帮助的人:3882万
展开全部

什么是勾股定理呢

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式