在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.(1)如图,过点A作⊙O1的

在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为125,sin∠AB... 在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为125,sin∠ABC=35,求直线AC的解析式;(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围. 展开
 我来答
tnhqdcwujf
推荐于2016-03-30 · 超过58用户采纳过TA的回答
知道答主
回答量:101
采纳率:0%
帮助的人:142万
展开全部
解:(1)如图1,过O作OG⊥AB于G,则OG=
12
5

设OA=3k(k>0),
∵∠AOB=90°,sin∠ABC=
3
5

∴AB=5k,OB=4k.
∵OA?OB=AB?OG=2S△AOB′
∴3k×4k=5×
12
5
,∴k=1.
∴OA=3,OB=4,AB=5,
∴A(3,0).
∵∠AOB=90°,
∴AB是⊙O1的直径.
∵AC切⊙O1于A,
∴BA⊥AC,∴∠BAC=90°.
在Rt△ABC中
∵cos∠ABC=
AB
BC
=
4
5

∴BC=
25
4

∴OC=BC-OB=
9
4

∴C(0,-
9
4
).
设直线AC的解析式为y=kx+b,则
3k+b=0
b=-
9
4

k=
3
4
,b=-
9
4

∴直线AC的解析式为y=
3
4
x-
9
4


(2)结论:d+AB的值不会发生变化,
设△AOB的内切圆分别切OA、OB、AB于点P、Q、T,如图2所示.
∴BQ=BT,AP=AT,OQ=OP=
d
2

∴BQ=BT=OB-
d
2
,AP=AT=OA-
d
2

∴AB=BT+AT=OB-
d
2
+OA-
d
2
=OA+OB-d.
则d+AB=d+OA+OB-d=OA+OB.
在x轴上取一点N,使AN=OB,连接OM、BM、AM、MN.
∵M(2,2),
∴OM平分∠AOB,
∴OM=2
2

∴∠BOM=∠MON=45°,
∴AM=BM,
又∵∠MAN=∠OBM,OB=AN,
∴△BOM≌△ANM,
∴∠BOM=∠ANM=45°,∠ANM=∠MON,
∴OM=NM∠OMN=90°,
∴OA+OB=OA+AN=ON=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消