(2010?松江区三模)已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE
(2010?松江区三模)已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.(1)求证:△CBD≌△ACE;(2)如果A...
(2010?松江区三模)已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.(1)求证:△CBD≌△ACE;(2)如果AB=3cm,那么△CBD经过怎样的图形运动后,能与△ACE重合?请写出你的具体方案.(可以选择的图形运动是指:平移、旋转、翻折)
展开
1个回答
展开全部
(1)证明:在等边三角形ABC中,
∵AD=BE,AB=BC,
∴BD=CE,(2分)
又∵∠ABC=∠ACB=60°,
∴∠CBD=∠ACE,(2分)
∵CB=AC,
∴△ACE≌△CBD.(2分)
(2)解:
方败渗法一:绕正三角形的中心逆时针旋转120°.(6分)
(注:如果运用此种方法,那么讲清旋转中心“正三角形的中心肆枯氏”,得(3分);讲清裂散“逆时针旋转120°”,得3分)
方法二:绕点C逆时针旋转120°,再沿CA方向平移3cm.(6分)
方法三:绕点B逆时针旋转120°,再沿BC方向平移3cm.(6分)
方法四:绕点A逆时针旋转60°,再绕点C逆时针旋转60°.(6分)
(注:不管经过几次运动,只要正确都可得分、如果分两次运动得到,那么讲清每一种运动均可得(3分):如果讲出旋转,那么得(1分),如果讲清方向和旋转角的大小,那么得(2分);如果讲出平移,那么得(1分),如果讲清平移的方向和距离,那么得2分)
∵AD=BE,AB=BC,
∴BD=CE,(2分)
又∵∠ABC=∠ACB=60°,
∴∠CBD=∠ACE,(2分)
∵CB=AC,
∴△ACE≌△CBD.(2分)
(2)解:
方败渗法一:绕正三角形的中心逆时针旋转120°.(6分)
(注:如果运用此种方法,那么讲清旋转中心“正三角形的中心肆枯氏”,得(3分);讲清裂散“逆时针旋转120°”,得3分)
方法二:绕点C逆时针旋转120°,再沿CA方向平移3cm.(6分)
方法三:绕点B逆时针旋转120°,再沿BC方向平移3cm.(6分)
方法四:绕点A逆时针旋转60°,再绕点C逆时针旋转60°.(6分)
(注:不管经过几次运动,只要正确都可得分、如果分两次运动得到,那么讲清每一种运动均可得(3分):如果讲出旋转,那么得(1分),如果讲清方向和旋转角的大小,那么得(2分);如果讲出平移,那么得(1分),如果讲清平移的方向和距离,那么得2分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询