2021-06-28 · 专注大学生职业技能培训在线教育品牌
1、模式跟踪
模式跟踪是数据挖掘的一项基本技术。它旨在通过识别和监视数据中的趋势或模式,以对业务成果形成智能推断。例如,企业可以用它来识别销售数据的发展趋势。如果发现某种产品在某些特定人群中的销售情况,要好于其他产品,那么该企业便可以据此来创建类似的产品或服务,甚至只是简单地为此类人群增加原始产品的库存。
2、数据清理和准备
作为数据挖掘过程中的一个重要环节,我们必须对原始数据进行清理和格式化,以用于各种后续的分析。具体而言,数据的清理和准备工作包含了:数据建模,转换,迁移,集成和聚合等各种元素。这是理解数据基本特征和属性,进而确定其最佳用途的必要步骤。
3、分类
基于分类的数据挖掘技术,主要涉及到分析各种类型数据之间的关联属性。一旦确定了数据类型的关键特征,企业便可以对它们进行分类。企业可以据此判定是该保护,还是该删除某些个人身份信息。
4、异常值(Outlier)检测
异常值检测可被用于识别数据集中的异常情况。企业在发现数据中异常值后,可以通过防范此类事件的发生,以顺利实现业务目标。例如,信用卡系统在某个特定时段出现使用和交易的高峰,那么企业便可以通过分析了解到,可能是由于“大促”所致,并为将来的此类活动做好资源上的事先部署与准备。
5、关联
关联是一种与统计学相关的数据挖掘技术。它旨在建立某些数据与其他数据、或数据驱动型事件的联系。它与机器学习中的“共现(co-occurrence)”概念相似,即:某个基于数据的事件的发生概率,是由另一个事件的存在性所标识的。例如,用户购买汉堡这一行为,往往会伴随着购买薯片的可能性。两者之间有着较强的关联性,却又不是绝对的伴生关系。
6、聚类
聚类是一种依靠可视化方法,来理解数据的分析技术。聚类机制使用图形或颜色,来显示数据在不同类别指标下的分布情况。通过图形式的聚类分析,用户可以直观地获悉数据随业务目标发展的趋势。