如图所示,在△ABC中,AC=BC,∠ACB=90°,O为AB的中点,现将一个三角板EGF的直角顶点G放在点O处,把△EF

如图所示,在△ABC中,AC=BC,∠ACB=90°,O为AB的中点,现将一个三角板EGF的直角顶点G放在点O处,把△EFG绕点O旋转,EG交直线AC于点K,FG交直线B... 如图所示,在△ABC中,AC=BC,∠ACB=90°,O为AB的中点,现将一个三角板EGF的直角顶点G放在点O处,把△EFG绕点O旋转,EG交直线AC于点K,FG交直线BC于点H.(1)请判断△OHK的形状; (2)求证:BH+AK=AC. 展开
 我来答
疯子疯eDZ4
推荐于2016-12-01 · TA获得超过266个赞
知道答主
回答量:191
采纳率:100%
帮助的人:97.7万
展开全部
(1)解:△OHK的形状是等腰直角三角形,
理由是:∵在△ABC中,AC=BC,∠ACB=90°,O为AB的中点,
∴∠A=∠B=45°,∠ACG=∠BCG=45°,AO=BO=CO,CO⊥AB,
∴∠BOC=∠KOH=90°,
∴∠BOH=∠HOC=90°-∠AOK,
在△BOH和△COK中,
∠B=∠OCK
BO=OC
∠BOH=∠COK

∴△BOH≌△COK(ASA),
∴BH=CK,OH=OK,
∵∠KOH=90°,
即△OHK的形状是等腰直角三角形;

(2)证明:∵BH=CK,
∴AC=AK+CK=AK+BH,
即BH+AK=AC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式