已知函数f(x)=ax2-(a+2)x+lnx,a∈R(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;

已知函数f(x)=ax2-(a+2)x+lnx,a∈R(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,若f(x)在区间[1,e]上... 已知函数f(x)=ax2-(a+2)x+lnx,a∈R(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求实数a的取值范围;(Ⅲ)若对任意x1,x2∈(0,+∞),且x1<x2,恒有f(x1)+2x1<f(x2)+2x2成立,求实数a的取值范围. 展开
 我来答
手机用户16546
推荐于2016-10-11 · 超过62用户采纳过TA的回答
知道答主
回答量:190
采纳率:33%
帮助的人:117万
展开全部
(Ⅰ)当a=1时,f(x)=x2?3x+lnx,f(x)=2x?3+
1
x
.…(2分)
因为f'(1)=0,f(1)=-2.
所以切线方程是y=-2.…(4分)
(Ⅱ)函数f(x)=2ax-(a+2)x+lnx的定义域是(0,+∞).…(5分)
当a>0时,f′(x)=2ax?(a+2)+
1
x
2ax2?(a+2)x?1
x
(x>0)

令f′(x)=0,即f′(x)=
2ax2?(a+2)x+1
x
(2x?1)(ax?1)
x
=0

所以x=
1
2
x=
1
a
.…(7分)
0<
1
a
≤1
,即a≥1时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
1<
1
a
<e
时,f(x)在[1,e]上的最小值是f(
1
a
)<f(1)=?2
,不合题意;
1
a
≥e
时,f(x)在(1,e)上单调递减,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意…(10分)
(Ⅲ)设g(x)=f(x)+2x,则g(x)=ax2-ax+lnx,
只要g(x)在(0,+∞)上单调递增即可.…(10分)
g′(x)=2ax?a+
1
x
2ax2?ax+1
x

当a=0时,g′(x)=
1
x
>0
,此时g(x)在(0,+∞)上单调递增;…(11分)
当a≠0时,只需g'(x)≥0在(0,+∞)上恒成立,因为x∈(0,+∞),只要2ax2-ax+1≥0,
则需要a>0,…(12分)
对于函数y=2ax2-ax+1,过定点(0,1),对称轴x=
1
4
>0
,只需△=a2-8a≤0,
即0<a≤8.综上0≤a≤8.…(16分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式