怎么理解“二元函数可微推不出偏导数连续”?
2个回答
展开全部
振荡极限不存在,所以二元函数可微,无法推出偏导数连续。
设D是二维空间R2的一个非空子集,称映射f:D→R为定义在D上的二元函数,通常记为z=f(x,y),(x,y)∈D或z=f(P),P∈D,其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。
上述定义中,与自变量x、y的一对值(即二元有序实数组)(x,y)相对应的因变量z的值,也称为f在点(x,y)处的函数值,记作f(x,y),即z=f(x,y),函数值f(x,y)的全体所构成的集合称为函数f的值域,记作f(D),即f(D)={z|z=f(x,y),(x,y)∈D}。
相关信息
必须注意,所谓二重极限存在,是指P(x,y)以任何方式趋于P0(x0,y0)时,f(x,y)都无限接近于A.因此,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使f(x,y)无限接近于某一确定值。
我们还不能由此断定函数的极限存在.但是反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,f(x,y)趋于不同的值,那么就可以断定这函数的极限不存在,关于二元函数的极限运算,有与一元函数类似的运算法则。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询