5个回答
展开全部
http://www.jsjyss.cn/czsj/czsjlist25177.htm?
一、填空
1、 (1)全等三角形的_________和_________相等;
(2)两个三角形全等的判定方法有:______________________________;
另外两个直角三角形全等的判定方法还可以用:_______;
(3)如右图,已知AB=DE,∠B=∠E,
若要使△ABC≌△DEF,那么还要需要一个条件,
这个条件可以是:_____________, 理由是:_____________;
这个条件也可以是:_____________, 理由是:_____________;
(4) 如右图,已知∠B=∠D=90°,,若要使△ABC≌△ABD,那么还要需要一个条件,
这个条件可以是:_____________, 理由是:_____________;
这个条件也可以是:_____________, 理由是:_____________;
这个条件还可以是_____________, 理由是:_____________;
2.如图5,⊿ABC≌⊿ADE,若∠B=40°,∠EAB=80°,
∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。
3.如图6,已知AB=CD,AD=BC,则 ≌ , ≌ 。
4.如图7,已知∠1=∠2,AB⊥AC,BD⊥CD,则图中全等三角形有 _____________;
5.如图8,若AO=OB,∠1=∠2,加上条件 ,则有ΔAOC≌ΔBOC。
6.如图9,AE=BF,AD‖BC,AD=BC,则有ΔADF≌ ,且DF= 。
7.如图10,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠ =∠
或 ‖ ,就可证明ΔABC≌ΔDEF。
8、已知如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,
(1)若以“ASA”为依据,还缺条件 .
(2)若以“AAS”为依据,还缺条件 .
(3)若以“SAS”为依据,还缺条件 .
二、选择题
1.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等;
③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A.4个 B、3个 C、2个 D、1个
2.如图,已知AB=CD,AD=BC,则图中全等三角形共有( )
A.2对 B、3对 C、4对 D 、5对
3. 具备下列条件的两个三角形中,不一定全等的是 ( )
(A) 有两边一角对应相等 (B) 三边对应相等
(C) 两角一边对应相等 (D)有两边对应相等的两个直角三角形
3.能使两个直角三角形全等的条件( )
(A) 两直角边对应相等 (B) 一锐角对应相等
(C) 两锐角对应相等 (D) 斜边相等
4.已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F的度数为 ( )
(A) 80° (B) 70° (C) 30° (D) 100°
5.对于下列各组条件,不能判定△ ≌△ 的一组是 ( )
(A) ∠A=∠A′,∠B=∠B′,AB=A′B′
(B) ∠A=∠A′,AB=A′B′,AC=A′C′
(C) ∠A=∠A′,AB=A′B′,BC=B′C′
(D) AB=A′B′,AC=A′C′,BC=B′C′
6.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是 ( )
(A)∠DAC=∠BCA (B)AC=CA D
(C)∠D=∠B (D)AC=BC
7.如图,D在AB上,E在AC上,且∠B=∠C,
则在下列条件中,无法判定△ABE≌△ACD的是( )
(A)AD=AE (B)AB=AC
(C)BE=CD (D)∠AEB=∠ADC
三、作图: 1、用圆规与直尺复制以下三角形(须保留作图痕迹)
2、下图是三个等边三角形,请分别把他们分成两个、三个、四个全等的三角形:
四、证明题
1、如右图,已知AB=AD,且AC平分∠BAD,求证:BC=DC
2.已知:点 A、C、B、D在同一条直线,AC=BD,∠M=∠N=90°,AM=CN
求证: MB‖ND
3、如右图,AB=AD ,∠BAD=∠CAE,AC=AE ,求证:AB=AD
4、已知:如图,AB=CD,AB‖DC.求证:,AD‖BC, AD=BC
5.已知:如图,AB=AC,DB=DC.F是AD的延长线上一点.
求证: (1) ∠ABD=∠ACD (2)BF=CF
6、已知:如图, AO平分∠EAD和∠EOD
求证:① △AOE≌△AOD ②EB=DC
7、 如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量CD的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形, 并写出已知、求证、证明。
一、填空
1、 (1)全等三角形的_________和_________相等;
(2)两个三角形全等的判定方法有:______________________________;
另外两个直角三角形全等的判定方法还可以用:_______;
(3)如右图,已知AB=DE,∠B=∠E,
若要使△ABC≌△DEF,那么还要需要一个条件,
这个条件可以是:_____________, 理由是:_____________;
这个条件也可以是:_____________, 理由是:_____________;
(4) 如右图,已知∠B=∠D=90°,,若要使△ABC≌△ABD,那么还要需要一个条件,
这个条件可以是:_____________, 理由是:_____________;
这个条件也可以是:_____________, 理由是:_____________;
这个条件还可以是_____________, 理由是:_____________;
2.如图5,⊿ABC≌⊿ADE,若∠B=40°,∠EAB=80°,
∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。
3.如图6,已知AB=CD,AD=BC,则 ≌ , ≌ 。
4.如图7,已知∠1=∠2,AB⊥AC,BD⊥CD,则图中全等三角形有 _____________;
5.如图8,若AO=OB,∠1=∠2,加上条件 ,则有ΔAOC≌ΔBOC。
6.如图9,AE=BF,AD‖BC,AD=BC,则有ΔADF≌ ,且DF= 。
7.如图10,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠ =∠
或 ‖ ,就可证明ΔABC≌ΔDEF。
8、已知如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,
(1)若以“ASA”为依据,还缺条件 .
(2)若以“AAS”为依据,还缺条件 .
(3)若以“SAS”为依据,还缺条件 .
二、选择题
1.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等;
③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A.4个 B、3个 C、2个 D、1个
2.如图,已知AB=CD,AD=BC,则图中全等三角形共有( )
A.2对 B、3对 C、4对 D 、5对
3. 具备下列条件的两个三角形中,不一定全等的是 ( )
(A) 有两边一角对应相等 (B) 三边对应相等
(C) 两角一边对应相等 (D)有两边对应相等的两个直角三角形
3.能使两个直角三角形全等的条件( )
(A) 两直角边对应相等 (B) 一锐角对应相等
(C) 两锐角对应相等 (D) 斜边相等
4.已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F的度数为 ( )
(A) 80° (B) 70° (C) 30° (D) 100°
5.对于下列各组条件,不能判定△ ≌△ 的一组是 ( )
(A) ∠A=∠A′,∠B=∠B′,AB=A′B′
(B) ∠A=∠A′,AB=A′B′,AC=A′C′
(C) ∠A=∠A′,AB=A′B′,BC=B′C′
(D) AB=A′B′,AC=A′C′,BC=B′C′
6.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是 ( )
(A)∠DAC=∠BCA (B)AC=CA D
(C)∠D=∠B (D)AC=BC
7.如图,D在AB上,E在AC上,且∠B=∠C,
则在下列条件中,无法判定△ABE≌△ACD的是( )
(A)AD=AE (B)AB=AC
(C)BE=CD (D)∠AEB=∠ADC
三、作图: 1、用圆规与直尺复制以下三角形(须保留作图痕迹)
2、下图是三个等边三角形,请分别把他们分成两个、三个、四个全等的三角形:
四、证明题
1、如右图,已知AB=AD,且AC平分∠BAD,求证:BC=DC
2.已知:点 A、C、B、D在同一条直线,AC=BD,∠M=∠N=90°,AM=CN
求证: MB‖ND
3、如右图,AB=AD ,∠BAD=∠CAE,AC=AE ,求证:AB=AD
4、已知:如图,AB=CD,AB‖DC.求证:,AD‖BC, AD=BC
5.已知:如图,AB=AC,DB=DC.F是AD的延长线上一点.
求证: (1) ∠ABD=∠ACD (2)BF=CF
6、已知:如图, AO平分∠EAD和∠EOD
求证:① △AOE≌△AOD ②EB=DC
7、 如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量CD的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形, 并写出已知、求证、证明。
参考资料: http://www.shitibaodian.com/chu/UploadFiles_8875/200707/20070700056.doc
展开全部
(sss)(sAs)(AsA)(AAs)(HL)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询