如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.(1)求证:D点为棱BB1的中点...
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.(1)求证:D点为棱BB1的中点;(2)若二面角A-A1D-C的平面角为60°,求直线A1C与平面ABB1A1所成的角的大小.
展开
1个回答
展开全部
(1)证明:过点D作DE⊥A1C于E点,取AC的中点F,连BF,EF
∵面DA1C⊥面AA1C1C且相交于A1C,面DA1C内的直线DE⊥A1C,
∴DE⊥面AA1C1C.
又∵面BAC⊥面AA1C1C且相交于AC,且△ABC为等腰三角形,易知BF⊥AC,
∴BF⊥面AA1C1C.由此知:DE∥BF,从而有D,E,F,B共面,又易知BB1∥面AA1C1C,
故有DB∥EF,从而有EF∥AA1,又点F是AC的中点,
所以DB=EF=
AA1=
BB1,所以D点为棱BB1的中点;
(2)解:延长A1D与直线AB相交于G,则过B作BH⊥A1G于点H,由三垂线定理知,A1G⊥CH
∴∠CHB为二面角A-A1D-C的平面角
设AA1=2b,AB=BC=a,则在直角△A1AG中,AB=BG;
在直角△DBG中,BH=
=
在直角△CHB中,tan∠CHB=
=
=
∴
=
,∴
=
=
∵面DA1C⊥面AA1C1C且相交于A1C,面DA1C内的直线DE⊥A1C,
∴DE⊥面AA1C1C.
又∵面BAC⊥面AA1C1C且相交于AC,且△ABC为等腰三角形,易知BF⊥AC,
∴BF⊥面AA1C1C.由此知:DE∥BF,从而有D,E,F,B共面,又易知BB1∥面AA1C1C,
故有DB∥EF,从而有EF∥AA1,又点F是AC的中点,
所以DB=EF=
1 |
2 |
1 |
2 |
(2)解:延长A1D与直线AB相交于G,则过B作BH⊥A1G于点H,由三垂线定理知,A1G⊥CH
∴∠CHB为二面角A-A1D-C的平面角
设AA1=2b,AB=BC=a,则在直角△A1AG中,AB=BG;
在直角△DBG中,BH=
BD×BG |
DG |
ab | ||
|
在直角△CHB中,tan∠CHB=
BC |
BH |
a | ||||
|
3 |
∴
b |
a |
| ||
2 |
A1A |
AB |
2b |
a |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|