如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。

如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然... 如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。
(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由。
展开
 我来答
含情脉脉MWmr7
2015-01-22 · TA获得超过173个赞
知道答主
回答量:189
采纳率:100%
帮助的人:58.6万
展开全部
解:(1)CD=BE;理由如下
∵△ABC和△ADE为等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,
∴△ABE≌△ACD,
∴CD=BE;
(2)△AMN是等边三角形;理由如下:
∵△ABE≌△ACD,
∴∠ABE=∠ACD,
∵M、N分别是BE、CD的中点,
∴BM=
∵AB=AC,∠ABE=∠ACD,
∴△ABM≌△ACN,
∴AM=AN,∠MAB=∠NAC,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等边三角形,
设AD=a,则AB=2a,
∵AD=AE=DE,AB=AC,
∴CE=DE,
∵△ADE为等边三角形,
∴∠DEC=120°,∠ADE=60°,
∴∠EDC=∠ECD=30°,
∴∠ADC=90°,
∴在Rt△ADC中,AD=a,∠ACD=30°,
∴CD=
∵N为DC中点,


∵△ADE,△ABC,△AMN为等边三角形,
∴S △ADE ∶S △ABC ∶S △AMN =


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式