复数的计算是怎么样的?

 我来答
帐号已注销
2021-05-20 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。

加法:实部与实部相加为实部,虚部与虚部相加为虚部。

(a+bi)+(c+di)=(a+c)+(b+d)i

减法:实部与实部相减为实部,虚部与虚部相减为虚i。

(a+bi)-(c+di)=(a-c)+(b-d)i

乘法:按多项式的乘法运算来做

(a+bi)*(c+di)=ac+adi+bci+bdi^2(i^2=-1)

=(ac-bd)+(ad+bc)i

除法:把除法写成分数的形式,再将分母实数化(就是乘其共轭复数)

(a+bi)/(c+di)=(a+bi)*(c-di)/[(c+di)(c-di)]

=[ac+bd-(ad-bc)i]/(c^2+d^2)

在实数域上定义二元有序对z=(a,b)

并规定有序对之间有运算“+”、“×”(记z1=(a, b),z2=(c, d)):

z1 + z2=(a+c, b+d)

z1 × z2=(ac-bd, bc+ad)

容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,有

z=(a, b)=(a, 0) + (0, 1) × (b, 0)

令f是从实数域到复数域的映射,f(a)=(a, 0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。

以上内容参考:百度百科-复数

娱乐我知晓哟

2021-05-20 · 专注各种娱乐,欢迎一起探讨
娱乐我知晓哟
采纳数:1348 获赞数:1000379

向TA提问 私信TA
展开全部

1、加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即


2、乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即

3、加法交换律:z1+z2=z2+z1

4、乘法交换律:z1×z2=z2×z1

5、加法结合律:(z1+z2)+z3=z1+(z2+z3)

6、乘法结合律:(z1×z2)×z3=z1×(z2×z3)

7、分配律:z1×(z2+z3)=z1×z2+z1×z3

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小乐学姐
2021-05-20 · 世界很大,我带你去看看
小乐学姐
采纳数:360 获赞数:191303

向TA提问 私信TA
展开全部

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。

复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。

两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

复数的内涵:

把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。

当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
闲闲谈娱乐
高能答主

2021-05-20 · 用力答题,不用力生活
知道大有可为答主
回答量:9505
采纳率:100%
帮助的人:162万
展开全部

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。

加法法则

复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,

则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。

两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,

即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

减法法则

复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,

则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。

两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。

复数的性质

由欧拉公式推得复数指数的ea+bi结果仍为复数,其幅角即为复数虚部b,其模长为ea。

对于复底数、实指数幂(r,θ)x,其结果为(rx,θ·x)。

对于复底数、复指数的幂,可用(a+bi)c+di=eln(a+bi)(c+di)来计算。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式