设数列{an}的前n项和为Sn,满足2Sn=an+1?2n+1+1,(n∈N*)且a1,a2+5,a3成等差数列.(1)求a1的值;(2
设数列{an}的前n项和为Sn,满足2Sn=an+1?2n+1+1,(n∈N*)且a1,a2+5,a3成等差数列.(1)求a1的值;(2)若数列{bn}满足bn=an+2...
设数列{an}的前n项和为Sn,满足2Sn=an+1?2n+1+1,(n∈N*)且a1,a2+5,a3成等差数列.(1)求a1的值;(2)若数列{bn}满足bn=an+2n,求证数列{bn}是等比数列.(3)求满足an>45×3n的最小正整数n.
展开
展开全部
(1)解:∵2Sn=an+1?2n+1+1,(n∈N*)
∴2a1=a2-3①,2(a1+a2)=a3-7②
∵a1,a2+5,a3成等差数列
∴2(a2+5)=a1+a3,③
∴由①②③可得a1=1;
(2)证明:∵2Sn=an+1?2n+1+1,
∴2Sn?1=an?2n+1(n≥2)
两式相减可得2an=an+1?an?2n
∴an+1=3an+2n
∵数列{bn}满足bn=an+2n,
∴
=
=
=3(n≥2)
∵2a1=a2-3,
∴a2=5
∴b1=3,b2=9
∴
=3
∴数列{bn}是一个以3为首项,公比为3的等比数列.…(9分)
(3)解:由(2)知bn=3n,即an+2n=3n
∴数列{an}的通项公式是an=3n-2n.…(11分)
∴
=1?(
)n>
,即(
)n<
,
所以n≥4,所以n的最小正整数为4.…(15分)
∴2a1=a2-3①,2(a1+a2)=a3-7②
∵a1,a2+5,a3成等差数列
∴2(a2+5)=a1+a3,③
∴由①②③可得a1=1;
(2)证明:∵2Sn=an+1?2n+1+1,
∴2Sn?1=an?2n+1(n≥2)
两式相减可得2an=an+1?an?2n
∴an+1=3an+2n
∵数列{bn}满足bn=an+2n,
∴
bn+1 |
bn |
an+1+2n+1 |
an+2n |
3an+2n+2n+1 |
an+2n |
∵2a1=a2-3,
∴a2=5
∴b1=3,b2=9
∴
b2 |
b1 |
∴数列{bn}是一个以3为首项,公比为3的等比数列.…(9分)
(3)解:由(2)知bn=3n,即an+2n=3n
∴数列{an}的通项公式是an=3n-2n.…(11分)
∴
an |
3n |
2 |
3 |
4 |
5 |
2 |
3 |
1 |
5 |
所以n≥4,所以n的最小正整数为4.…(15分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询