如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒...
如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.(1)求初始时刻导体棒受到的安培力.(2)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?(3)若在导体棒上加上按一定规律变化的水平外力可使金属棒做的简谐运动,这样在导体棒中产生正弦交变电流,则此外力的方向与速度方向的关系如何?提供的功率多大?(导体棒在平衡位置处的速度大小仍为v0)
展开
1个回答
展开全部
(1)导体棒中产生的感应电动势为E=BLv0,感应电流为I=
E |
R |
B2L2V0 |
R |
(2)开始状态,导体棒具有初动能,弹簧没有弹性势能.当导体棒做切割磁感线运动时,产生内能,系统的机械能不断减小,全部转化为内能,最终导体棒静止在弹簧原长处.根据能量守恒定律得
电阻R上产生的焦耳热Q=
1 |
2 |
v | 2 0 |
(3)在导体棒中产生正弦交变电流,外力的方向与速度方向要相同.由于回路中产生的是正弦式交变电流,功率用有效值求,感应电流的最大值为Im=
BLv0 |
R |
| ||
2 |
B2L2v0 |
2R |
答:
(1)初始时刻导体棒受到的安培力大小为
B2L2V0 |
R |
(2)导体棒往复运动,最终将静止于弹簧原长处.从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为Q=
1 |
2 |
v | 2 0 |
(3)此外力的方向与速度方向相同,提供的功率为
B2L2v0 |
2R |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询