已知:在四边形ABCD中,AB=DC,E,F分别是AD,BC的中点,GH垂直于EF与AB,DC分别交于F,H,
已知:在四边形ABCD中,AB=DC,E,F分别是AD,BC的中点,GH垂直于EF与AB,DC分别交于G,H,O为垂足,求证:角AGH=角DHG...
已知:在四边形ABCD中,AB=DC,E,F分别是AD,BC的中点,GH垂直于EF与AB,DC分别交于G,H,O为垂足,求证:角AGH=角DHG
展开
4个回答
展开全部
证明:
延长FE分别交BA,CD于P,Q,取AC中点M,连接EM、FM
因为E是AD的中点,M是AC中点
所以EM是△ABC的中位线
所以EM=AB/2且ME//AB
同理FM=CD/2且MF//CD
由于AB=CD
所以ME=MF
所以∠MEF=∠MFE
因为ME//AB
所以∠APE=∠MEF
因为MF//CD
所以∠CQE=∠MFE
所以∠APE=∠CQE
因为EF⊥GH
所以∠APE+∠PGO=90°,∠CQE+∠QHO=90°
所以∠PGO=∠QHO
即∠AGH=∠DHG
供参考!祝你学习进步
原来的ID“江苏吴云超”在百度知道不能用了,永久封号了(近30000分的号呀,其实还不能算是作弊的),建议大家不要作弊刷分,操作也要规范。否则封了以后申诉也没有用。
延长FE分别交BA,CD于P,Q,取AC中点M,连接EM、FM
因为E是AD的中点,M是AC中点
所以EM是△ABC的中位线
所以EM=AB/2且ME//AB
同理FM=CD/2且MF//CD
由于AB=CD
所以ME=MF
所以∠MEF=∠MFE
因为ME//AB
所以∠APE=∠MEF
因为MF//CD
所以∠CQE=∠MFE
所以∠APE=∠CQE
因为EF⊥GH
所以∠APE+∠PGO=90°,∠CQE+∠QHO=90°
所以∠PGO=∠QHO
即∠AGH=∠DHG
供参考!祝你学习进步
原来的ID“江苏吴云超”在百度知道不能用了,永久封号了(近30000分的号呀,其实还不能算是作弊的),建议大家不要作弊刷分,操作也要规范。否则封了以后申诉也没有用。
展开全部
连接BD,并取BD的中点K。连接EK,FK.则EK是△ADB的中位线,FK是△BDC的中位线。2EK=AB=CD=2FK,所以EK=FK,角KEF=角KFE
而由EK//AB知角AGH=90°-角KEF。同理角DHG=90°-角KFE。
所以角AGH=角DHG
而由EK//AB知角AGH=90°-角KEF。同理角DHG=90°-角KFE。
所以角AGH=角DHG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BD。AC,则三角形ABD与BCD全等,三角形ADC与ABC全等,可得该四边形为平行四边形,中线高线延长交点,必定也是垂直的,所以两角皆为直角,于是两角相等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询