选修4-5:不等式选讲已知函数f(x)=|2x+1|,g(x)=|x|+a-1(1)当a=1,解不等式f(x)≥g(x);(2)
选修4-5:不等式选讲已知函数f(x)=|2x+1|,g(x)=|x|+a-1(1)当a=1,解不等式f(x)≥g(x);(2)若存在x∈R,使得f(x)≤g(x)成立,...
选修4-5:不等式选讲已知函数f(x)=|2x+1|,g(x)=|x|+a-1(1)当a=1,解不等式f(x)≥g(x);(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
展开
1个回答
展开全部
(1)当a=1时,由f(x)≥g(x)得|2x+1|≥|x|,
两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-
,
∴原不等式的解集为(-∞,-1]∪[-
,+∞)…(5分)
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=
…(7分)
故h(x)min=h(-
)=-
,从而所求实数a的范围为a-1≥-
,即a≥
…(10分)
两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-
1 |
3 |
∴原不等式的解集为(-∞,-1]∪[-
1 |
3 |
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=
|
故h(x)min=h(-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询