不定积分∫1/1+t^3dt怎么求?
1个回答
展开全部
∫1/(1+t^3)dt=∫1/[(1+t)(1-t+t^2)]dt=1/3∫1/[(1+t)dt-1/3∫(t-2)/(1-t+t^2)]dt=ln|t+1|/3-1/3∫(t-2)/[(t-1/2)^2+3/4]dt
=ln|t+1|/3-1/3∫(t-1/2)/[(t-1/2)^2+3/4]dt+1/2∫1/[(t-1/2)^2+3/4]dt
=ln|t+1|/3-1/6ln(t^2-t+1)+1/2arctan(t-1/2)+c
=ln|t+1|/3-1/3∫(t-1/2)/[(t-1/2)^2+3/4]dt+1/2∫1/[(t-1/2)^2+3/4]dt
=ln|t+1|/3-1/6ln(t^2-t+1)+1/2arctan(t-1/2)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询