八下数学知识点整理归纳

 我来答
玩车之有理8752
2022-07-05 · TA获得超过917个赞
知道小有建树答主
回答量:135
采纳率:100%
帮助的人:66.4万
展开全部

为了方便同学们更好的学习八年级下册数学,接下来我给大家分享一下八年级下册数学重要知识点,供参考。

轴对称知识点

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

数据的分析

1.加权平均数:加权平均数的计算公式。权的理解:反映了某个数据在整个数据中的重要程度。而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数。

4.一组数据中的最大数据与最小数据的差叫做这组数据的极差。

5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

不等式

1.掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc。

2.比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;

即:a>b<===>a-b>0;a=b<===>a-b=0;a<b<===>a-b<0。

3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。

几何知识点

1.旋转和平移

平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。

旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。

2.平行四边形

平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。

3.特殊平行四边形行

特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式