关于x的方程||x-2|-1|=a恰有三个整数解,则a的值为______.
1个回答
展开全部
①若|x-2|-1=a,
当x≥2时,x-2-1=a,解得:x=a+3,a≥-1;
当x<2时,2-x-1=a,解得:x=1-a;a>-1;
②若|x-2|-1=-a,
当x≥2时,x-2-1=-a,解得:x=-a+3,a≤1;
当x<2时,2-x-1=-a,解得:x=a+1,a<1;
又∵方程有三个整数解,
∴可得:a=-1或1,根据绝对值的非负性可得:a≥0.
即a只能取1.
故答案为1.
当x≥2时,x-2-1=a,解得:x=a+3,a≥-1;
当x<2时,2-x-1=a,解得:x=1-a;a>-1;
②若|x-2|-1=-a,
当x≥2时,x-2-1=-a,解得:x=-a+3,a≤1;
当x<2时,2-x-1=-a,解得:x=a+1,a<1;
又∵方程有三个整数解,
∴可得:a=-1或1,根据绝对值的非负性可得:a≥0.
即a只能取1.
故答案为1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询